
Haskell Tutorial

Jos�e Bernardo Barros Jos�e Jo�ao Almeida

Departamento de Inform�atica

Universidade do Minho

Braga� Portugal

September� ����

Introduction

Haskell is a general purpose� non�strict� purely functional programming language�
There are several compilers and interpreters of this language freely available for almost
any computer� The language is de�ned in the Haskell ��� Report� and the Haskell ���
Library Report�� If you want to learn to program in Haskell� a tutorial� A Gentle

Introduction to Haskell ���� is also available�� The present document should be seen as
a complement to this text� it gives a hands�on tour of a small interpreter of Haskell
called Hugs

�� Throughout this text you will �nd small exercises that will help you
getting acquainted with the language� These appear is a di	erent font� and with a
vertical bar on the left�

Hugs

The �rst thing that you have to do is to make sure that you have the Hugs iinterpreter�
and to �nd out how to start it� Try the command hugs�

This should take you to a screen like

��� ��� ��� ��� ���������� ����������

� � � � � � � � � �������� � �������� Hugs ���

� ����� � � � � � � � ����� � �������

� ���� � � � � � � � �� � ������� � The Nottingham and Yale

� � � � � ����� � � ����� � �������� � Haskell User�s System

���� ���� ����������� ����������� ����������� June ����

Copyright �c	 The University of Nottingham and Yale University
 ����������

�URL� http���www�haskell�org�report�index�html
�URL� http���www�haskell�org�library�index�html
�URL� http���www�haskell�org�tutorial�index�html
�URL� http���haskell�org�hugs�

�



Bug reports� hugs�bugs
haskell�org� Web� http���www�haskell�org�hugs�

Reading file ��usr�local�share�hugs�lib�Prelude�hs��

Hugs session for�

�usr�local�share�hugs�lib�Prelude�hs

Type �� for help

Prelude�

The last line points out that Hugs is ready to execute commands� There are several
commands that you may want to execute�

�quit will end the session

�� will list the commands available

Apart from these commands� Hugs can compute the value of expressions� Thus� if you
type in ���� it will answer back ��

Types

Haskell is a typed language� This means that each expression 
or term� has a type�
You can ask the type of an expression using the command �type� we
ll take a look at
this later� But you can also instruct Hugs to print the type of each computed result�
by entering the command �set �t� Try this command and then compute some basic
arithmetics�

The basic types in Haskell are�

� Int and Integer are used to represent integers� Elements of Integer are un�

bounded integers�

� Float and Double are used to represent �oating point numbers� Elements of
Double have higher precision�

� Bool is the type of booleans� True and False�

� Char is the type of characters�

Notice that all the names of types start with a capital letter�

Apart from these basic types� there are several ways of making new types�

� if a is a type� �a� is the type of the sequences of elements of a

� �� is the empty sequence

� h�t is the sequence whose head and tail are h and t respectively

The sequence with the �rst three natural numbers is thus represented by

�



����	���

Alternatively� we can simply write ��
�
	� to represent that sequence�

The particular case �Char� has another name � String and there is another way
of representing these sequences� by delimiting them by quotes� Thus� the sequence

�H���a���s���k���e���l���l����

can also be written as

� ��H�
�a�
�s�
�k�
�e�
�l�
�l��

� �Haskell�

� if a and b are types� 
a
b� is the type of pairs whose �rst component is of type a
and second component is of type b� Of course� this construction may be done for
more than two types a and b�

� if a and b are types� a �� b is the type of functions from a to b

�� Find expressions whose type is

� �Bool��Char��

� ��Bool��Char�

� ��Bool�Char��

Test your answers by using Hugs to evaluate the types of those expressions�

�� Using the command �type� �nd the type of the following expressions

� head

� sum

� fst

� elem

� flip

� flip elem

By supplying the expected arguments to the above functions� try to guess what they

are�

There exist a lot of functions that are readily available when you start Hugs� Their
de�nitions are stored in a �le called Prelude�hs� That is the reason for the line

Reading file ��usr�local�share�hugs�lib�Prelude�hs��

We can also have our own de�nitions� These should be written in a �le and then loaded
using the command �load� It is usual to name these �les with a post�x �hs 
for haskell
script��

�



Using your favourite text editor� create a �le named example�hs with the following

de�nitions

square x � x � x

factorial x � product �	��x�

Load this �le into Hugs� by typing �load example �Hugs will assume that the

�le ends with �hs�� You can now use the de�nitions of the functions square and
factorial� Test these de�nitions by evaluating the following expressions�

� square 


� square �factorial ��

� factorial �square ��

You might have noticed by now that Hugs �guesses� the types of the expressions that
you ask it to evaluate� But you can also provide this type with the expression�

After instructing Hugs to print the types of the expressions �by using the command

�set �t�� evaluate the following�

� � � 


� ����Integer� � 


� factorial 
�

� factorial �
���Integer�

Similarly� you can provide type information in your scripts�

Edit the �le example�hs in order to obtain�

square �� Float �� Float

square x � x � x

factorial �� Integer �� Integer

factorial x � product �	��x�

Reload the �le �using the command �reload� and re�evaluate the expressions above�

There exist a lot of functions to manipulate lists� You can �nd out the complete list by
consulting the on�line guide that comes with Hugs��

��le���usr�local�share�hugs�docs�library�index�html

�



�� De�ne functions to�

�a� compute the length of a list

�b� compute the concatenation of two lists

�c� reverse of a list

�d� merge two sorted lists

�e� sort a list �for instance� using quicksort�

�� De�ne a function squares that computes the list of squares from a list�

One very important feature of most functional programming languages is the possibil�
ity of de�ning functions that receive other functions as arguments� For instance� the
function filter can be de�ned as

filter �� 
a �� Bool� �� �a� �� �a�

filter p �� � ��

filter p 
h�t� � let t� � filter p t

in if 
p h� then h�t�

else t�

�� The function map has type�

map �� �a �� b� �� �a� �� �b�

map f l is the list that results from applying the function f to each element

of l� De�ne it�

�� Use the function map to de�ne squares�

	� The function foldr has type

foldr �� �a �� b �� b� �� b �� �a� �� b

and foldr f e �a�b�c� � f �a� f �b� f �c�e��� De�ne foldr�


� Use foldr to de�ne the functions length� and sum�

Inductive Types

Haskell also provides a way of de�ning inductive types� These start with the keyword
data�

Enumerated Types

The simplest inductive types that one can de�ne are enumerated types� For instance�
to de�ne a type for the days of the weak� one can use such a construction�

�



data WeekDays � Sunday � Monday � Tuesday � Wednesday �

Thursday � Friday � Saturday

This declaration de�nes a new type � WeekDays with seven elements� These elements
are called data constructors or simply constructors�

Note again that the name of the type starts with a capital letter� Moreover� the names
of the constructors must also start with a capital letter�

This example takes us to a peculiarity of Haskell � the meaning of the layout of a
program� In the majority of programming languages� de�nitions have delimiters that
point out where that de�nition starts and ends� In Haskell this e	ect is obtained with
a speci�c layout� Formally� a de�nition ends before the �rst piece of text which lies at
the same level or to the left of the start of the de�nition� Thus� the following text

a b c

d e

f

g

h

i j k

l m

n

should be seen structured as

a b 
c 
d e f g� h�

i j k l m n

Let us now write a function that takes an element of WeekDay and returns whether it
is a working day� We will de�ne this function by providing an equation for each of the
possibilities of elements of that type�

workingDay �� WeekDay �� Bool

workingDay Sunday � False

workingDay Monday � True

workingDay Tuesday � True

workingDay Wednesday � True

workingDay Thursday � True

workingDay Friday � True

workingDay Saturday � False

Note that as the patterns used are non�overlapping� the order in which they appear in
the program is irrelevant�

Haskell also allows the use of overlapping equations� In that case one should be careful
with the order in which these equations appear� When two equations can be applied to
the same expression� the one chosen is the one which appears �rst in the program�

Thus� the previous de�nition could also be written as

�



workingDay �� WeekDay �� Bool

workingDay Sunday � False

workingDay Saturday � False

workingDay x � True

De�ne a function that� given a working day� returns the following day�

Recursive Types

Recursive types can be de�ned using induction� For instance� the natural numbers can
be de�ned by�

data Nat � Z � S Nat

Again� this declaration de�nes a new type � Nat� Associated with this new type� there
exist two 
data� constructors�

� Z is an element of Nat

� S is a function that given an element of type Nat� yields a 
new� element of type
Nat

Thus� Z� S Z� or S S S S Z are all elements of type Nat�

Let us de�ne a function that takes an element of type Nat and returns whether that
element is zero�

This function is de�ned by pattern�matching �

isZero �� Nat �� Bool

isZero 
S x� � False

isZero Z � True

�� De�ne a function toInt that converts a natural number into an integer�

�� De�ne a �recursive� function oddN that tests whether a natural number is odd�

	� Rede�ne the function oddN using toInt and odd�

Parametric Types

Inductive types can be used to de�ne parametric types�

For a given type a� the type Maybe a is de�ned as

data Maybe a � Nothing � Just a

�



Note that Maybe is not a type � it is a type constructor� for it takes a type and yields
a type�

The type Maybe a can be used to represent the result of a partial function�

Using pattern matching� de�ne a function that adds two elements of type Maybe Int�

An example of a recursive and parametric type is that of binary trees whose nodes are
of some type a�

data BinTree a � Null � T a 
BinTree a� 
BinTree a�

�� De�ne the function inorder �� BinTree a �� �a� that returns the list of

elements of a tree�

�� Using pattern matching� de�ne a recursive function that sums the nodes of a

binary tree of integers�

	� Rede�ne the previous function so that it can be used to add the elements of a

binary tree of Maybe Ints�


� Similarly to what happens with the function foldr� de�ne a higher order func�

tion foldBtree that can be used in the de�nition of the two functions above�

In order to simulate a change giving machine �in PTEs� we will use the type Coins

and the list values de�ned as�

type Coins � �Int�

values � �����	��� 
�� ��� 	�� 
� 	�

Each element of type Coins will represent the number of each of the coins available�

Thus �	���������	��� means � coin of ��� PTEs� � coins of ��� � coin of �� and

	 coins of ��

�� De�ne the functions that add and subtract two elements of type Coins�

�� De�ne the function amount �� Coins �� Int that computes the amount of

money corresponding to a set of coins�

	� De�ne a function payment �� Coins �� Integer �� Maybe Coins that

simulates the payment of a certain amount using a particular set of coins� The

result is the set of coins used �the fact that it is Maybe Coins explicits the fact

that the payment may not be possible��

The fact that Haskell is a lazy language� allows us to de�ne in�nite structures�

For instance� ����� represents the list of all natural numbers� whereas �x � x ��

������ odd x� represents the list of all odd numbers� De�ne a function that com�

putes all prime numbers�

�



Classes

One way to understand classes in Haskell is to view them as types of types� Another
possible approach is to talk about classes as a means of expressing 
ad�hoc� polymor�
phism�

Use Hugs to compute the following expressions �make sure that Hugs prints out the

type of the computed expressions��

� � � 


� ��� � 
��

� ����Integer� � 


What is then the type of the function �� After all� it can be used to

� add two Ints yielding an Int�

� add two Doubles yielding a Double�

� add two Integers yielding an Integer�

But you cannot compute �a���b��

One way to solve this problem is to group types into classes� in the same way that
expressions were grouped into types�

When asking Hugs for the type of � we get the following answer�

Prelude� �t 
��


�� �� Num a �� a �� a �� a

Prelude�

This answer should be read as � is a function that takes two elements of a type a and

returns an element of the same type a� for every type a which is an instance of the class

Num�

The declaration of a class in Haskell is done using the keyword class� and by enu�
merating all the functions that should be available for the instances of that class�

For instance� one of the simplest 
and more used� classes in Haskell is the class Eq�
de�ned as

class Eq a where


��� �� a �� a �� Bool


��� �� a �� a �� Bool

This de�nition should be read as

For a type a to be an instance of class Eq there must exist functions

�



�� �� a �� a �� Bool

�� �� a �� a �� Bool

In order to state that a particular type is an instance of the class Eq� one needs to
explicit the way in which elements of that type are compared� For instance� to declare
that the type Maybe Int is an instance of the class Eq� one might type the following�

instance Eq 
Maybe Int� where

Nothing �� Nothing � True


Just x� �� 
Just y� � 
x �� y�

� �� � � False

x �� y � not 
x �� y�

Note that� in the third line of this de�nition� there are two occurrences of ��

� the �rst refers to the function that we are de�ning � comparison of elements of
type Maybe Int

� the second refers to the comparison of elements of type Int 
which is an instance
of this same class���

This de�nition would work not only for the type Maybe Int but for any type Maybe a�
provided that the type a is itself an instance of Eq� We can say this with the following
de�nition�

instance 
Eq a� �� Eq 
Maybe a� where

Nothing �� Nothing � True


Just x� �� 
Just y� � 
x �� y�

� �� � � False

x �� y � not 
x �� y�

��



Consider the following de�nition

class Set s where

empty �� s a

isEmpty �� s a �� Bool

singleton �� a �� s a

union �� s a �� s a �� s a

member �� a �� s a �� Bool

choice �� s a �� �a � s a�

�� Lists can be used as sets�

data SetsasLists a � SL �a�

Complete the following de�nition

instance Set SetasLists where

�������������

�� Lists without duplicates can also be seen as sets� How would you change the

previous de�nitions to de�ne this instance


	� Complete the following de�nition�

instance �Eq a� �� Eq �SetasLists a� where

�������������

Monads

The class Monad is de�ned in Haskell as

class Monad m where

return �� a �� m a


���� �� m a �� 
b �� m b� �� m b


��� �� m a �� m b �� m b

x �� y � x ��� 
� a �� y�

Note that this is a constructor class 
as opposed to a type class like Eq� � its instances
are type constructors�

The operation ��� is usually called bind�

One way to understand the use of monads in functional programming is to see an
expression of type M a 
for some monadic type constructor M� represents a computation
of type a� Under this point of view� the operations available can be interpreted as

� return x represents a computation whose result is x

� given a computation c 
of type a� and a function f that takes an element of type
a and performs a computation of type b� the expression

��



c ��� f

is the computation that starts by performing computation c� and then performs
the computation f x where x is the result of the computation c�

� the operation �� is similar to the previous one� except that the intermediate value

x� is ignored�

Let
s start with the simplest way to represent a computation�

data Id a � a �� This is not valid Haskell code

instance Monad Id where

return x � x

x ��� f � f x

This corresponds to the classical view of computations in functional programming �
executing a computation corresponds to the evaluation of a normal form�

In the next case� a computation may yield a value of a certain type a� or give no result
at all� An appropriate type for this is the type Maybe a de�ned above� The de�nition
of Maybe as a monadic constructor is as follows�

instance Monad Maybe where

�� return �� a �� Maybe a

return a � Just a

�� 
���� �� 
Maybe a� �� 
a �� 
Maybe b�� �� Maybe b

Nothing ��� � � Nothing


Just x� ��� f � f x

The natural generalization to this example is to think of non�deterministic computations
� that can yield a �nite number of results� Lists are a good candidate for this type� The
list constructor can be seen as monadic with the following de�nitions�

instance Monad �� where �� This is not valid Haskell

�� return �� a �� �a�

return x � �x�


���� �� �a� �� 
a �� �b�� �� �b�

l ��� f � concat 
map f l�

There is in Haskell a syntactic alternative to the use of the operators ��� and ���
This alternative is inspired in the de�nition of lists by compreenshion�

Instead of writing something of the form�

c� ��� 
 � x ��

c	 ��

c� ��� 
 � z �� f���

one can write

��



do f x �� c� �

c	 �

z �� c� �

f

g

One �nal example is that of computations with an internal state� This can be achieved
by using state transition systems

data StTransf state value � T 
state �� 
value
 state��

The constructor StTransf state can be de�ned as an instance of the class Monad�

instance Monad 
StTransf state�

where return a � T 
�x �� 
a
x��



T f� ��� g�

� T 
�s �� let 
a
s�� � f s

T fun � g a

in fun s��

Let us now use this monad in a very simple way � the state will only keep track of the
number of additions made�

�� Basic operations

add a b � T 
�s �� 

a�b�
 s����

sub a b � add a 
�b�

mult � b � return �

mult 
n��� b � do � x �� mult n b �

add x b

�

�� interrogations

state � T 
�s �� 
s
 s��

resetstate � T 
�s �� 

�
���

The use of these basic operations is very simple and resembles an imperative program�

prog� � do � x �� add � � �

y �� mult � x �

z �� add x y

z �� add z � �

return z

�

The type of this program can be checked using Hugs�

Main� �t prog�

prog� �� StTransf Int Int

��



To execute this program� we have to provide an initial state�

execute 
T program� � program �

Let
s test the behaviour of prog�

Main� execute prog�


	�
��

Meaning that the returned value is �� and that the �nal state is ��

Change the above example so that the state will keep also track of the smallest

computed number�

An important application of monads inHaskell is the input�output� In this viewpoint�
an interactive program is just a computation that may perform some I�O� The type IO
a pre�de�ned in Haskell� re�ects this idea � an element of this type is a program that
performs some I�O and returns a value of type a� The type constructor IO may be
de�ned as an instance of Monad�

� return x is the computation that performs no I�O at all and returns the value x

� p� ��� f is the program that starts by performing the p�
s I�O and then performs
the I�O correspondent to f x� where x is the value returned by p�� In a certain way�
this operation corresponds to the sequential composition of interactive programs�

The following are pre�de�ned functions in Haskell�

� putChar �� Char �� IO ��

� getChar �� IO Char

De�ne the following �pre�de�ned� functions�

�� putStrLn �� String �� IO ��

�� getLine �� IO String

References

��� Paul Hudak and Joseph H� Fasel� A Gentle Introduction to Haskell� Technical report�
Department of Computer Science� Yale University� �����

��


