
CSC122A, Spring 2005 Computer Science II Final Exam

Final Exam: May 19 Name:

You will have 3 hours for this exam, although you should not need that much. This exam is closed-book
and closed-note. Please take some time to check your work. If you need extra space, write on the back.
There are a total of 70 points on this exam.

1. (12 points) Consider the following Haskell function:

f(0) = 1
f(n) = f(n-1) - n + f(n-1) + 2

(a) Complete the following table of values of f():

n 0 1 2 3 4 5 6 . . . 10
f(n) . . .

(b) Show the recursion tree (i.e., draw a tree with one node for each function invocation, where the
children of a node are the function calls that it makes) for evaluating f(3):

(c) Write a Java version of f() which will produce the same results and have the same recursion
tree:

(d) Estimate the big-O running time of your function in part (c)

(e) What is an easy way to make this function much more efficient, and what does the big-O running
time become?

1

CSC122A, Spring 2005 Computer Science II Final Exam

2. (6 points) What will be the output of the following C++ program?

void printem(int n, int a, int &b)
{

cout << n << ": " << a << " " << b << endl;
a = 0;
b = 0;

}

int main()
{

int x, y;
int *p, *q;

x = 4; y = 2; printem(1, x, y);

x += 3; y += 3; printem(2, x, y);

p = new int;
*p = 6; q = &x; printem(3, *p, *q);

*q = *p; x += 3; printem(4, *p, *q);

q = p; x += 3; printem(5, *p, *q);

y = x; x = *p; printem(6, x, y);
}

(Recall that cout << a << b << endl; is the C++ equivalent of
System.out.print(a); System.out.print(b); System.out.println();)

3. (2 points) In the above program, what statement needs to be added (and where) to properly deallocate
the dynamically allocated memory?

2

CSC122A, Spring 2005 Computer Science II Final Exam

4. (10 points) For these questions, use the following definition for a Node:

class Node {
int item;
Node next;

}

(a) Consider the following Java method (in some class that has access to the definition of Node):

void someFunc(Node head)
{

Node p = head;
Node q;
while (p != null && p.next != null) {

q = p.next;
p.item = p.item + q.item;
p.next = q.next;
p = p.next;

}
}

Show the result of executing someFunc(head) for the following list:

head
- 3 - 8 - 5 - 7 ��

(b) If someFunc were written in C++, what additional statement would need to be added (and where)
to properly deallocate Nodes?

(c) Using the above definition of Node, write a Java method countOddPairs(Node head) which
returns a count of the number of pairs of adjacent nodes in the list whose sum is odd. For
example, calling countOddPairs(head) for the above list should return 2, since 3 + 8 and 8 + 5
are both odd, while 5 + 7 is even. Be sure to handle corner cases correctly.

3

CSC122A, Spring 2005 Computer Science II Final Exam

5. (10 points) Here is Java code for one version of the insertion sort algorithm:

public void insertionSort(int[] a, int n)
// sort a[0 .. n-1] into ascending order
{

for (int k = 1; k < n; k++) {
// insert a[k] into the sorted region a[0 .. k-1]
for (int i = k; i > 0 && a[i - 1] > a[i]; i--) {

int temp = a[i - 1];
a[i - 1] = a[i];
a[i] = temp;

}
}

}

(a) Trace the operation of insertion sort by showing the contents of a[] at the end of each pass
through the outer loop; use the array {5, 1, 2, 3, 4}, where n = 5:

k a[0] a[1] a[2] a[3] a[4]
initial 5 1 2 3 4

1

2

3

4

(b) How many item comparisons (a[i - 1] > a[i]) are performed in part (a)?

(c) How many swaps are performed in part (a)?

(d) What would be the numbers of comparisons and swaps for the array {50, 1, 2, ..., 49},
where n = 50?

4

CSC122A, Spring 2005 Computer Science II Final Exam

6. (10 points) Here is Java code for the selection sort algorithm:

public void selectionSort(int[] a, int n)
// sort a[0 .. n-1] into ascending order
{

for (int k = n - 1; k > 0; k--) {
// find index of largest item in a[0 .. k]
int largest = 0;
for (int i = 1; i <= k; i++) {

if (a[i] > a[largest]) largest = i;
}

// move largest item to position k
int temp = a[largest];
a[largest] = a[k];
a[k] = temp;

}
}

(a) Trace the operation of selection sort by showing the contents of a[] at the end of each pass
through the outer loop; use the array {5, 1, 2, 3, 4}, where n = 5:

k a[0] a[1] a[2] a[3] a[4]
initial 5 1 2 3 4

4

3

2

1

(b) How many item comparisons (a[i] > a[largest]) are performed in part (a)?

(c) How many swaps are performed in part (a)?

(d) What would be the numbers of comparisons and swaps for the array {50, 1, 2, ..., 49},
where n = 50?

5

CSC122A, Spring 2005 Computer Science II Final Exam

7. (12 points) Consider the following Haskell code defining a datatype of binary trees, a binary search
tree insertion function, and a preorder tree traversal:

data Tree = Node(Int, Tree, Tree) | Null

bstInsert(x, Null) = Node(x, Null, Null)
bstInsert(x, Node(y, left, right)) =

if x == y then Node(y, left, right)
else if x < y then Node(y, bstInsert(x, left), right)
else Node(y, left, bstInsert(x, right))

preOrder(Null) = []
preOrder(Node(x, left, right)) = [x] ++ preOrder(left) ++ preOrder(right)

(Recall that ++ is the list concatentation operator: [1, 2] ++ [3, 4] yields [1, 2, 3, 4].)

(a) Write a Haskell function find, with type (Int, Tree) -> Bool, such that find(x, t) returns
true if x is in the binary search tree t, and false otherwise:

(b) Complete the following definition of a Haskell (actually HasCl) function bstInsertAll, with type
([Int], Tree) -> Tree, such that bstInsertAll(xs, t) is the result of inserting all of the
values from the list xs into the binary search tree t:

bstInsertAll([], t) = __________________________

bstInsertAll([x : xs], t) = bstInsert(x, ______________________________________)

(c) Give a Haskell definition for an inorder traversal function:

6

CSC122A, Spring 2005 Computer Science II Final Exam

8. (8 points) What is the output when the main method of the Mystery class is executed?
public interface LazyList {

public int next();
}

public class Ints implements LazyList {
private int n;

public Ints(int n)
{

this.n = n;
}

public int next()
{

n++;
return n;

}
}

public class Filter implements LazyList {
private LazyList list;
private int p;

public Filter(LazyList list, int p)
{

this.list = list;
this.p = p;

}

public int next()
{

int n = list.next();
while (n % p == 0) {

n = list.next();
}
return n;

}
}

public class Mystery implements LazyList {
private LazyList list;

public Mystery()
{

this.list = new Ints(1);
}

public int next()
{

int p = list.next();
list = new Filter(list, p);
return p;

}

private static void test(LazyList x)
{

for (int i = 0; i < 5; i++) {
System.out.print(x.next() + " ");

}
System.out.println();

}

public static void main(String[] args)
{

System.out.println("Ints");
test(new Ints(1));

System.out.println("Filter");
test(new Filter(new Ints(1), 2));

System.out.println("Mystery");
test(new Mystery());

}
}

7

