
Overview Schedule Resources Assignments Home

CSC 221: Computer Organization, Spring 2009

Practice Exam 2 Solutions

The exam will be open-book, so that you don't have to memorize the ASCII table or the details of the Pep/8

architecture.

With a two-address architecture, most machine instructions take two addresses as operands. An

instruction such as

add X, Y

says to add the value stored at address Y to the value at address X, leaving the result in X. That is, it is

roughly equivalent to the C++ statement X += Y;. How many memory reads are required to fetch and

execute this instruction on a two-address architecture (where X and Y are direct-mode operands)?

There will be one group of reads to fetch the instruction and its operands (it is not specified how many

bytes this will involve, nor is it clear how many bytes may be fetched in one read, but let's assume that

this counts as a single read operation). Then the value of X will need to be read, followed by the value

of Y, for a total of three reads.

How many memory writes are required?

The only write will be to store the modified value of X back into memory.

Give an equivalent sequence of instructions for the Pep/8 architecture, and tell how many memory

reads and writes are required for it.

Since the Pep/8 is a one-address architecture, we need to use the accumulator to do the addition:

LDA X,d

ADDA Y,d

STA X,d

This requires fetching three separate instructions from memory (for a total of nine bytes; each

instruction causes a one-byte read of the instruction specifier, followed by a two-byte read of the

operand), plus one read each for X and Y(two bytes each). This makes for five reads (or eight, if you

count the operand fetches separately), for a total of 13 bytes. As with the two-address code, there is

only one write needed, of the two-byte result for X.

1.

Convert the following C++ program to Pep/8 assembly language:

#include <iostream>

using namespace std;

int n;

int f(int x)

{

 if ((x & 1) == 1) {

 return (3 * x) + 1;

 } else {

2.

Practice Exam 2 Solutions - CSC 221: Computer Organization, Spring 2009 http://www.csc.depauw.edu/~bhoward/courses/0809Spring/csc221/pe2so...

1 of 7 4/17/2009 10:52 AM

 return x / 2;

 }

}

int main()

{

 cin >> n;

 while (n > 1) {

 n = f(n);

 cout << n << endl;

 }

}

 BR main

n: .BLOCK 2

x: .EQUATE 2

retVal: .EQUATE 4

f: LDA x,s

 ANDA 1,i

 CPA 1,i

 BRNE L1

 LDA x,s

 ADDA x,s

 ADDA x,s

 ADDA 1,i

 BR L2

L1: LDA x,s

 ASRA

L2: STA retVal,s

 RET0

main: DECI n,d

L3: LDA n,d

 CPA 1,i

 BRLE L4

 STA -4,s

 SUBSP 4,i

 CALL f

 ADDSP 4,i

 LDA -2,s

 STA n,d

 DECO n,d

 CHARO '\n',i

 BR L3

L4: STOP

 .END

Convert the following C++ program to Pep/8 Assembly Language:

#include <iostream>

using namespace std;

int a, b;

int main() {

 cin >> a;

 cin >> b;

 b += a;

 a = b - a;

 cout << a;

 cout << b;

}

 BR main

a: .BLOCK 2

b: .BLOCK 2

3.

Practice Exam 2 Solutions - CSC 221: Computer Organization, Spring 2009 http://www.csc.depauw.edu/~bhoward/courses/0809Spring/csc221/pe2so...

2 of 7 4/17/2009 10:52 AM

main: DECI a,d

 DECI b,d

 LDA b,d

 ADDA a,d

 STA b,d

 LDA b,d ; redundant

 SUBA a,d

 STA a,d

 DECO a,d

 DECO b,d

 STOP

 .END

Convert the following Pep/8 program to an equivalent program in C++:

newLine: .EQUATE 0x000A

 BR main

x: .WORD 1

y: .WORD 2

z: .WORD 3

c: .BYTE 4

main: DECI y,d

 LDA y,d

 ASLA

 STA x,d

 ASLA

 ASLA

 ADDA x,d

 ADDA z,d

 STA x,d

 DECO x,d

 CHARO newLine,i

 DECO y,d

 LDA z,d

 ORA 0x0030,i

 STBYTEA c,d

 CHARO c,d

 STOP

 .END

#include <iostream>

using namespace std;

int x = 1;

int y = 2;

int z = 3;

char c = 4;

int main() {

 cin >> y;

 x = y * 2;

 x = y * 8 + x + z; // effect is x = y * 10 + z;

 cout << x << endl;

 cout << y;

 c = z | '0';

 cout << c; // effect is cout << z; if z is a single (decimal) digit

}

What is the output of the above program if the user enters 42?

4.

Practice Exam 2 Solutions - CSC 221: Computer Organization, Spring 2009 http://www.csc.depauw.edu/~bhoward/courses/0809Spring/csc221/pe2so...

3 of 7 4/17/2009 10:52 AM

The output will be

423

423

Note that printing y * 10 + z is always the same as printing y followed by z, if z is a single digit

(provided the arithmetic doesn't overflow).

Consider the boolean formula (a + b')
 .
(b' + c')

 .
(a' + c).

Construct a truth table for this formula.

a bc x

000 1

001 1

010 0

011 0

100 0

101 1

110 0

111 0

a.

Draw a circuit using AND, OR, and NOT gates with inputs a, b, and c, whose output is the value

of this formula.

Instead of trying to draw a circuit here, the boolean formula for the obvious two-level AND-OR

circuit from the truth table is a'b'c'+a'b'c+ab'c.

b.

Draw an equivalent circuit using as few gates as possible.

Here is the formula, based on the Karnaugh map minimization: a'b'+b'c.

c.

5.

Convert the following Pep/8 program to an equivalent program in C++:

 BR main

n: .BLOCK 2

fact: .WORD 1

i: .EQUATE 0

p: .EQUATE 2

mul: SUBSP 4, i

 LDA 0, i

 STA p, s

 STA i, s

L3: CPA n, d

 BREQ L4

 LDA p, s

 ADDA fact, d

 STA p, s

 LDA i, s

 ADDA 1, i

 STA i, s

 BR L3

L4: LDA p, s

 STA fact, d

 RET4

6.

Practice Exam 2 Solutions - CSC 221: Computer Organization, Spring 2009 http://www.csc.depauw.edu/~bhoward/courses/0809Spring/csc221/pe2so...

4 of 7 4/17/2009 10:52 AM

main: LDA 7, i

 STA n, d

L1: CPA 0, i

 BREQ L2

 CALL mul

 LDA n, d

 SUBA 1, i

 STA n, d

 BR L1

L2: DECO fact, d

 CHARO '\n', i

 STOP

 .END

#include <iostream>

using namespace std;

int n;

int fact = 1;

void mul()

{

 int i, p;

 p = 0;

 i = 0;

 while (i != n) {

 p = p + fact;

 i = i + 1;

 }

 fact = p;

}

int main()

{

 n = 7;

 while (n != 0) {

 mul();

 n = n - 1;

 }

 cout << fact << endl;

 return 0;

}

Modify the above program so that the subroutine mul doesn't use the global variables n and fact;

instead, it should take the values of n and fact as parameters, and produce the new value of fact as a

return value. Show both the modifications necessary to mul and to main.

Here is the modified program:

 BR main

n: .BLOCK 2

fact: .WORD 1

i: .EQUATE 0

p: .EQUATE 2

n2: .EQUATE 6

fact2: .EQUATE 8

retVal: .EQUATE 10

mul: SUBSP 4, i

 LDA 0, i

 STA p, s

 STA i, s

L3: CPA n2, s

 BREQ L4

7.

Practice Exam 2 Solutions - CSC 221: Computer Organization, Spring 2009 http://www.csc.depauw.edu/~bhoward/courses/0809Spring/csc221/pe2so...

5 of 7 4/17/2009 10:52 AM

 LDA p, s

 ADDA fact2, s

 STA p, s

 LDA i, s

 ADDA 1, i

 STA i, s

 BR L3

L4: LDA p, s

 STA retVal, s

 RET4

main: LDA 7, i

 STA n, d

L1: CPA 0, i

 BREQ L2

 STA -6, s ; push n as first argument

 LDA fact, d

 STA -4, s ; push fact as second argument

 SUBSP 6, i ; allocate 2 arguments and a return value

 CALL mul

 ADDSP 6, i

 LDA -2, s ; get the return value

 STA fact, d

 LDA n, d

 SUBA 1, i

 STA n, d

 BR L1

L2: DECO fact, d

 CHARO '\n', i

 STOP

 .END

Design a combinational network that implements a two-bit comparator. This is a component that takes

two pairs of input signals, a1a0 and b1b0, and produces one output line, labeled GT, which is 1 exactly

when the binary number a1a0 is greater than the binary number b1b0. For example, if the inputs are 10

and 01, then the output should be 1; if the inputs are 10 and 10, or 01 and 10, then the output should be

0. Try to use as few logic gates as possible.

Here's the best formula I get: a1b1' +a1b1a0b0' +a1'b1'a0b0'.

8.

A fancier version of the two-bit comparator would have three outputs, say GT, EQ, and LT, which

reflect whether the first input (a1a0) is respectively greater than, equal to, or less than the second

(b1b0). Show how to use one or more copies of this component (NOTE: you do not need to design this

component, just draw a box with the appropriate input and output lines), plus a few logic gates, to

construct a four-bit comparator; that is, a component which takes two groups of four input signals,

a3a2a1a0 and b3b2b1b0, and produces a 1 on exactly one of the three outputs GT, EQ, and LT

depending on whether a>b, a=b, or a<b (where a is the value given by the unsigned binary number

a1a0, and b is given by b1b0).

Use one comparator to compare the high-order bits, and another to compare the low-order bits. The GT

output is the OR of the high-order GT with the AND of the high-order EQ and the low-order GT (that

is, a is greater than b if either the first two bits are greater, or the first two bits are the same and the

second two bits are greater). The LT output is similar, and the EQ output is simply the AND of both of

the two-bit EQ outputs.

9.

Overview Schedule Resources Assignments Home

DePauw University, Computer Science Department, Spring 2009

Practice Exam 2 Solutions - CSC 221: Computer Organization, Spring 2009 http://www.csc.depauw.edu/~bhoward/courses/0809Spring/csc221/pe2so...

6 of 7 4/17/2009 10:52 AM

Maintained by Brian Howard (bhoward@depauw.edu). Last updated Friday, April

17, 2009

Practice Exam 2 Solutions - CSC 221: Computer Organization, Spring 2009 http://www.csc.depauw.edu/~bhoward/courses/0809Spring/csc221/pe2so...

7 of 7 4/17/2009 10:52 AM

