
CSC 233, Spring 2011 Foundations of Computation Practice Exam 1

Practice Exam 1

You will have 1 hour for this exam, although you should not need that long. This exam is closed-book
and closed-note. Please take some time to check your work. If you need extra space, write on the back. You
must show your work to receive any partial credit. There are a total of 25 points on this exam.

1. (8 points) Consider the following Scala function:

def m(a: Int, b: Int): (Int, Int) = {
var x = a
var y = 0
while (x >= b) {
x = x - b
y = y + 1

}
(y, x) // Return this pair

}

(a) What is the result of m(10, 3)?

(b) Give an invariant relating the values of x and y each time the while test is evaluated:

(c) What function is computed by m(a, b)? Support your claim using your invariant. You should
assume that a ≥ 0 and b > 0.

1



CSC 233, Spring 2011 Foundations of Computation Practice Exam 1

2. (5 points) Suppose the running time T (N) of some algorithm is given by the following recurrence:{
T (1) = 1

T (N) = T (N − 1) + 2N − 1, (N > 1)

(a) Fill in the following table of values. For the last entry, give a closed-form expression for T (N),
either by solving the recurrence or by guessing:

T (1) T (2) T (3) T (4) T (N)

(b) Prove by induction that your closed-form expression for T (N) is correct.

2



CSC 233, Spring 2011 Foundations of Computation Practice Exam 1

3. (12 points) Here is our Scala code for inserting a value in a binary search tree:

trait Tree
case object Empty extends Tree
case class Node(left: Tree, value: Int, right: Tree) extends Tree

def insert(t: Tree, n: Int): Tree = t match {
case Empty => Node(Empty, n, Empty)
case Node(l, v, r) =>
if (n == v) // No change -- already in tree

t
else if (n < v)
Node(insert(l, n), v, r)

else // n > v
Node(l, v, insert(r, n))

}

(a) Complete the following skeleton to define a function insertAll which takes a tree and a list of
numbers and returns a new tree with all of the numbers inserted into the original tree:

def insertAll(t: Tree, nums: List[Int]): Tree = nums match {
case Nil =>

case head :: tail =>

}

(b) Show the tree which results from evaluating insertAll(Empty, List(3, 1, 4, 1, 5)):

(continued)

3



CSC 233, Spring 2011 Foundations of Computation Practice Exam 1

(c) Give a tight big-oh upper bound on the average running time of insertAll in terms of the size
of the list, N (assume that the initial tree is empty, and that the resulting tree is “balanced”):

(d) Here is a version of inorder traversal which returns the visited items in a list (the ::: operator
concatenates two lists; assume for this problem that this can be done in constant time):

def inorder(t: Tree): List[Int] = t match {
case Empty => Nil
case Node(l, v, r) => inorder(l) ::: List(v) ::: inorder(r)

}

Now we may define the following function:

def doSomething(nums: List[Int]): List[Int] = inorder(insertAll(Empty, nums))

What is the result of doSomething(List(3, 1, 4, 1, 5))?

(e) Describe the effect of doSomething(nums) on an arbitrary list nums of type List[Int]:

(f) Give a tight big-oh upper bound on the average running time of doSomething in terms of the size
of its argument, N :

4


