## Practice Exam 2

Solutions

This is a collection of relevant problems I have given on previous exams; it does not correspond exactly to a one-hour test. This exam is closed-book and closed-note. Please take some time to check your work. If you need extra space, write on the back. You must show your work to receive any partial credit.

## 1. Given the sets

$$A = \{a, i, u\}$$
  
 $B = \{i, o, u\},$ 

list the elements of each of the following sets:

(a) 
$$A \cup B$$

(b)  $A \cap B$ 

(c) A - B

(d)  $(A - B) \cup (B - A)$ 

(e)  $A \times B$ 

$$\{(a,i), (a,o), (a,u), (i,i), (i,o), (i,u), (u,i), (u,o), (u,u)\}$$

(f) P(A)

$$\{\phi, \{a\}, \{i\}, \{u\}, \{a,i\}, \{a,u\}, \{i,u\}, \{a,i,u\}\}\}$$

2. Let A be the set  $\{a, e, i, o, u\}$ , and consider the relation R on A whose graph is given by the following adjacency matrix:

(Recall that the convention is that the cell at row x, column y is 1 if x R y.)

(a) Draw the graph of R:



(b) Either identify a cycle in the graph of R, or give a topological ordering of the elements of A according to R:



3. Given the set  $S = \{A, B, C, D, E, F, G\}$ , we may represent any subset of S by its characteristic vector, which will have seven bits. For example, the set  $\{A, B, D\}$  is represented by the bit vector 1101000. Consider these named subsets of S:

$$I = \{C, E, G\} \qquad iii = \{E, G, B\}$$
 On the bit vector representation for each of the following:

(a) 
$$I \cup iii = \{B, C, E, G\}$$

$$0(1010)$$
or 0(0010)

(b) 
$$I \cap iii = \{E, G\}$$

0010101

AND 0100101

(c) 
$$I - V = \{C, E\}$$
AND  $\frac{0.010101}{0.010100} = V$  (complement)

(d) 
$$(I-V)\cup(V-I) = \{C,E\}\cup\{B,D\}$$

$$= \{B,C,D,E\}$$

$$= \{B,C,D,E\}$$
(e)  $(I\cup V)-(I\cap V) = \{B,C,D,E,C\}-\{G\}$ 

$$= \{B,C,D,E\}$$
Same as (d)
$$= \{B,C,D,E\}$$

4. For the same set S, how many elements are in the powerset, P(S)? What is the set of bit vectors corresponding to the elements of P(S) (give a simple description)?

$$|S| = 7$$
, So  $|P(s)| = 2^7 = 128$   
the bit vectors are the 128 7-bit binary  
numbers from 0000000 (o) to 1111111 (127).

5. We observed in class that the logical implication operator,  $\rightarrow$ , behaves like a transitive relation. Consider the set  $\mathcal{E}$  of all logical expressions. If E and F are elements of  $\mathcal{E}$ , then we will define the relation  $\Rightarrow$  on  $\mathcal{E}$  by saying that  $E \Rightarrow F$  exactly when the expression  $E \to F$  is a tautology. For example,  $(p+q) \Rightarrow (q+p)$ . However,  $(p+q) \not\Rightarrow pq$ , because when p is true and q is false, the condition p+q is true but the conclusion pq is not.

(a) Doe 
$$pq \Rightarrow (p+q)$$
 hold?   
 $yes - whenever pq$  is true, it is also the case that  $p+q$  is true.

(b) Is  $\Rightarrow$  reflexive? Why or why not?

(c) Is  $\Rightarrow$  symmetric? Why or why not?

no — by the above, 
$$Pq \Rightarrow P+q$$
 but  $p+q \Rightarrow Pq$ 

(d) Is  $\Rightarrow$  antisymmetric? Why or why not?

no — for example, both 
$$p+q \Rightarrow q+p$$

and  $q+p \Rightarrow p+q$ ,

but  $p+q \neq q+p$  (as expressions; they are however logically equivalent)

s  $\Rightarrow$  transitive? Why or why not?

(e) Is  $\Rightarrow$  transitive? Why or why not?

yes — if 
$$E \rightarrow F$$
 and  $F \rightarrow G$  are tautologics,  
then so is  $E \rightarrow G$ , for all  $E, F, G$ .

6. Here is an adjacency list representation of a directed graph:

| Node         | Successors |
|--------------|------------|
| A            | В          |
| В            | (none)     |
| $\mathbf{C}$ | A          |
| D            | A, B       |
| $\mathbf{E}$ | B, D       |
| F            | D, G       |
| G            | C          |

(a) Draw the graph.



(b) If the graph is acyclic, give a topological ordering of its nodes; otherwise, identify a cycle. If starting at  $f: C_3^3 \to A_2^2 \to B_2^2$  no back edges, so acyclic topo. ordering: (one of several) E,F,D,G,C,A,B

(c) What is the longest path in the graph that never revisits a node?

(by inspection) 
$$F \rightarrow G \rightarrow C \rightarrow A \rightarrow B$$

(d) Define the distance between two vertices as the length of the shortest path between them, or  $\infty$ if there is no such path. What is the greatest non-infinite distance in this graph?



7. Here is an adjacency matrix representation of an undirected weighted graph (a weight of  $\infty$  means there is no edge between those vertices):

|                 | A | В                                                                                  | $\mathbf{C}$ | D        | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ |
|-----------------|---|------------------------------------------------------------------------------------|--------------|----------|--------------|--------------|--------------|
| A               | 0 | 5                                                                                  | 7            | 4        | 6            | 5            | 2            |
| В               | 5 | 0                                                                                  | 1            | $\infty$ | $\infty$     | $\infty$     | $\infty$     |
| $^{\mathrm{C}}$ | 7 | 1                                                                                  | 0            | 8        | $\infty$     | 2            | $\infty$     |
| D               | 4 | $\infty$                                                                           | 8            | 0        | 1            | $\infty$     | $\infty$     |
| $\mathbf{E}$    | 6 | $\infty$                                                                           | $\infty$     | 1        | 0            | 1            | $\infty$     |
| $\mathbf{F}$    | 5 | $\infty$                                                                           | 2            | $\infty$ | 1            | 0            | 1            |
| G               | 2 | $\begin{array}{c} 5 \\ 0 \\ 1 \\ \infty \\ \infty \\ \infty \\ \infty \end{array}$ | $\infty$     | $\infty$ | $\infty$     | 1            | 0            |

(a) Draw the graph.



(b) Find the (weighted) shortest path from A to E.



- (c) Would the answer to the previous question change if the weight of the edge between B and C were changed to -1? Why or why not?

no change — the shortest path from A to either B or C is 5 units, so the -1 between B&C couldn't make a path shorter than 4 (in fact, the best path (d) Find a minimum spanning tree for the graph. using that edge is A-B-C-F-E this uses Prim's algorithm (like Dijkstra w/ different priority):

