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Abstract

An extension of the simply-typed lambda calculus is presented which contains both well-
structured inductive and coinductive types, and which also identifies a class of types for which
general recursion is possible. The motivations for this work are certain natural constructions
in category theory, in particular the notion of an algebraically bounded functor, due to Freyd.
We propose that this is a particularly elegant language in which to work with recursive objects,
since the potential for general recursion is contained in a single operator which interacts well
with the facilities for bounded iteration and coiteration.

1 Introduction

In designing typed languages that include recursion, there has long been a tension between the
structure provided by types based on well-founded induction and the freedom permitted by types
based on general recursion. Very few languages outside of purely theoretical studies have chosen a
strictly inductive system (one exception is charity [CF92]), partly because the logical price to be
paid for ensuring that all recursion is well-founded is the necessity that all computations terminate,
hence the language cannot be Turing-equivalent. On the other hand, the prevalence of inductively
defined structures in computer science makes it natural to structure many algorithms in terms
of iteration over elements of an inductive datatype. This natural structure is lost in common
programming languages, where iteration is at best a syntactic sugaring for an application of a
fixpoint operator.

In this paper we present an extension of the simply-typed lambda calculus with inductive types
which also allows general recursion in a controlled manner, thus preserving many of the benefits of
well-founded structural induction in a Turing-equivalent language. There are two key ideas which
permit this:

• In addition to inductive types and iteration over their elements, we also consider the dual
notion, the coinductive types, along with their associated natural operation of coiteration.

• All the potential for unbounded recursion in the language is confined to a subset of the types
which are syntactically identified as “pointed”—a generalization of the standard notion of a
lifted type, along the lines of Moggi’s computation types. General recursion over pointed types
follows from adding a function which forces evaluation of an element of a pointed coinductive
type, either producing a value of the corresponding inductive type or failing to terminate.
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All of the components of the language are motivated by constructions in category theory. This
reflects our belief that the language of categories can be a useful source of inspiration and guidance
in the design of programming language features. Our goal is to apply several recent results and
trends in category theory to issues in practical language design, producing an elegant, powerful
language with the full natural structure afforded by inductive and coinductive types.

As an example of a program written in this language, consider first the following term fibs, of
the (pointed) coinductive type νt. (1 + nat × t)⊥ (which may be thought of as a type of streams
of natural numbers. The details of the language will be presented in Section 2; to aid in reading
the example, gen is the coiteration operator, it is the iterator, ι1 and ι2 are the injections into the
sum type, ⌊x⌋ is the insertion of x into the lifted type—as a pattern with λ it produces a strict
abstraction, and 3 is the unique value of type 1. We also use a minor amount of syntactic sugaring
which will not be discussed further):

fibs = gen(λ〈m,n〉. ⌊ι2〈m, 〈n,m + n〉〉⌋)〈1, 1〉

This generates the stream of Fibonacci numbers (1, 1, 2, 3, 5, . . .) by coiteration; no non-termination
is yet involved, because it only generates successive numbers in the stream on demand. Now consider
the associated (pointed) inductive type µt. (1+nat × t)⊥, which is essentially a type of finite lists of
natural numbers. A reasonable function defined by iteration over this type is headUpto, which takes
a natural number k and a list ℓ and returns the largest prefix of ℓ consisting entirely of numbers
less than k:

headUpto = λk. it(λ⌊x⌋. [λ3. fold⌊ι13⌋, λ〈n, ℓ〉.







if n < k
then fold⌊ι2〈n, ℓ〉⌋
else fold⌊ι13⌋






]x)

Again, this is a perfectly well-founded operation, because all lists of the inductive type are finite.
If we wish to use this function to find the list of all Fibonacci numbers less than 100, we must first
force fibs from a stream into a list; it is this action of “observing” the value of a coinductive object
which introduces the only possible source of non-termination in the language, and the only reason
it is allowed at this point is that we made an explicit provision for it with the lifting operator ⊥,
creating a pointed type. The correct function application is thus headUpto 100 (force fibs); with
an appropriate reduction strategy (which only needs to be lazy in applying the force function),
this evaluates to the desired list (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89). The above solution is natural and
elegant, and would not have been nearly so easy to produce in a strictly iterative style. On the
other hand, a solution using the standard machinery of fixpoint operators would have obscured or
overpowered the intuitive construction of the iterative and coiterative pieces of the computation.

1.1 Related work

A preliminary attempt was made in the author’s PhD thesis [How92] (see also [How93]) to reconcile
inductive types with types for general recursion. The solution there was to introduce two different
kinds of recursively defined type, corresponding to the choice between induction and recursion.
This system did not provide a close integration of the two kinds of recursive type, and suffered
from a reliance on the heavy machinery of fixpoint induction for reasoning about terms involving
general recursion.

Following recent work by Freyd and Barr on algebraic compactness [Fre90, Fre91, Fre92, Bar92],
the more elegant solution presented in this paper was developed. In brief, Freyd showed how to
reduce the problem of finding solutions to general recursive domain equations to that of building
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inductive types, provided the functors involved are algebraically bounded, i.e., the inductive and
coinductive types are isomorphic. By syntactically identifying a class of type expressions which
will correspond in a model to algebraically bounded functors, we may apply this construction to
develop a programming language which accounts for general recursive functions while only dealing
with inductive (and coinductive) types.

In spirit, this work also follows in the footsteps of Crole and Pitts [CP90], who present a
language which accounts for general recursion by obtaining a fixpoint object which allows unbounded
iteration under the control of Moggi’s computation type. In our opinion, their system suffers from
a somewhat unnatural choice of proof rules, similar to our earlier problems with an unfortunate
mixing of general fixpoint induction with the well-founded rules for inductive types. More will be
said about the connection with the current system below.

1.2 Structure of the paper

In Section 2 we present the details of our proposed language and its categorical motivations: first
a basic language with functions, sums, and products is described, then inductive, coinductive, and
pointed types are added in turn. The major novelty of the language is the system of pointed
types and the explicit forcing operation they permit—this is described in section 2.2. Following
this are three sections of examples and comparisons to related work: a fixpoint combinator over
pointed types is constructed in Section 3, based on the fixpoint object of Crole and Pitts [CP90];
then Freyd’s construction of recursive types from inductive types [Fre90] is applied in Section
4 to provide universal types for call-by-value and call-by-name versions of the untyped lambda
calculus; and finally, in Section 5, we compare our system to several recent proposals advocating
a categorical style of program construction and manipulation based on iteration and coiteration
[MFP91, FM91, Mei92, Kie93].

2 The language λµν⊥

Figure 1 presents a convenient formulation of the syntax of our base language with finite sums
and products. As usual, a typing judgment Γ ⊲ M :σ means that the term M has type σ, given
the context Γ (a list of free variables and their types). Figure 2 lists the axioms governing these
terms; they are derived from the equations which hold among the corresponding arrows in a closed
category with finite products and coproducts. Observe that the term metavariables M , N , . . . , are
restricted to range over only terms of the appropriate type (so that, for example, the axiom (1η)
does not imply that all terms are equal to 3, but only all terms of type 1). In association with
standard rules about equality and substitution, these axioms provide an equational semantics. A
non-deterministic operational semantics for the language may be obtained by directing the β axioms
from left to right. For more details about this system and the relation between its equational and
operational semantics, consult [How92]; related systems are considered many places in the literature,
for example [GLT89, LS86, Mit90].

In a standard way, we may interpret a type expression σ containing a free type variable t as
a functor; that is, it provides a map from types to types by substitution for t, and it may be
extended to a map on terms of functional type (because the intended model of this language is a
cartesian closed category, we will feel free to abuse the distinction between arrows and elements of
an exponential object). For example, if σ ≡ 1 + t, then it maps the type τ to 1 + τ and it maps
a term M of type τ → υ to the term [λx: 1. ι1+υ

1 3, λy: τ. ι1+υ
2 (My)] of type 1 + τ → 1 + υ. When

talking about σ as a functor, we will find it convenient to name these maps Fσ , or simply F ; thus,
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(hyp)
Γ, x:σ ⊲ x:σ

(→ I)
Γ, x:σ ⊲ M : τ

Γ ⊲ (λx:σ.M):σ → τ

Γ ⊲ M :σ → τ, Γ ⊲ N :σ

Γ ⊲ MN : τ
(→ E)

(1I)
Γ ⊲ 3: 1

Γ ⊲ M :σ × τ

Γ ⊲ π1M :σ
(×E1)

(×I)
Γ ⊲ M :σ, Γ ⊲ N : τ

Γ ⊲ 〈M,N〉:σ × τ

Γ ⊲ M :σ × τ

Γ ⊲ π2M : τ
(×E2)

(+I1)
Γ ⊲ M :σ

Γ ⊲ ισ+τ
1 M :σ + τ Γ ⊲ 2

υ: 0 → υ
(0E)

(+I2)
Γ ⊲ M : τ

Γ ⊲ ισ+τ
2 M :σ + τ

Γ ⊲ M :σ → υ, Γ ⊲ N : τ → υ

Γ ⊲ [M,N ]:σ + τ → υ
(+E)

Figure 1: Syntax of the basic language

(→ β) (λx:σ.M)N = {N/x}M (λx:σ.Mx) = M, x not free in M (→ η)

(×β1) π1〈M,N〉 = M M = 3 (1η)

(×β2) π2〈M,N〉 = N M = 〈π1M,π2M〉 (×η)

(+β1) [M,N ](ισ+τ
1 P ) = MP M = 2

υ (0η)

(+β2) [M,N ](ισ+τ
2 P ) = NP M = [λx:σ.M(ισ+τ

1 x), λy: τ.M(ισ+τ
2 y)] (+η)

Figure 2: Axioms of the basic language

(µI)
Γ ⊲ foldµF :F (µF ) → µF

Γ ⊲ M :F (τ) → τ

Γ ⊲ itµF M :µF → τ
(µE)

(νI)
Γ ⊲ M : τ → F (τ)

Γ ⊲ genνF M : τ → νF Γ ⊲ unfold νF : νF → F (νF )
(νE)

(µβ) itµF M(foldµF N) = M(F (itµF M)N)
P (foldµF N) = M(F (P )N)

P = itµF M
(µη)

(νβ) unfold νF (genνF M N) = F (genνF M)(MN)
unfold νF (PN) = F (P )(MN)

P = genνF M
(νη)

Figure 3: Syntax and axioms/inference rules for inductive and coinductive types
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we would write F (τ) = 1 + τ and F (M) = [λx. ι13, λy. ι2(My)] (dropping type annotations for
brevity).

A solution to the recursive type equation t = σ is a type τ such that there is an isomorphism
between τ and F (τ), i.e., τ is a fixpoint of F . A well-known technique for finding a fixpoint,
attributed to Lambek, is to consider the category of F -algebras, whose objects are (in our case)
functions of type F (υ) → υ, for any type υ; given F -algebras f :F (τ) → τ and g:F (υ) → υ, an
arrow from f to g is a function h of type τ → υ such that the following diagram commutes:

F (τ) F (υ)

τ υ

F (h)

h

f g

-

-

? ?

.

If f :F (τ) → τ is an initial object in this category, then in fact τ is a fixpoint of F , and f is the
desired isomorphism. If g:F (υ) → υ is the isomorphism for any other fixpoint υ of F , then the
initiality of f implies that the arrow h in the above diagram gives a unique way to map τ into υ;
in this respect, τ is the least fixpoint of F .

A dual solution to t = σ may be found by taking a terminal object in the category of F -
coalgebras, which are simply functions of type υ → F (υ). Reversing all the arrows in the above
diagram, if f : τ → F (τ) is such a terminal object, then τ is the greatest fixpoint of F .

If we extend our assumptions about the category underlying λµν⊥ to suppose that at least every
F which corresponds to a type expression σ has both least and greatest fixpoints, then we may
augment the language to include these fixpoints as the types µt. σ and νt. σ, respectively, which
we will frequently write as µF and νF . An important point to note is that the type expression
t → σ does not produce a (covariant) functor—given a function f : τ → υ, there is no general way
to produce a function of type (τ → σ) → (υ → σ) (consider σ = τ = 0 and υ = 1, and note that
the existence of a function of type 1 → 0 leads to inconsistency). This contravariance in the first
argument of → leads us to restrict the types σ for which we can find fixpoints to those in which t
occurs only positively, that is, to the left of an even number of function arrows.

The terms and proof rules corresponding to these least and greatest fixpoint types (which are
commonly called inductive and coinductive types, respectively) are given in Figure 3. For µF , the
term foldµF is the initial F -algebra, and the operator itµF produces the unique F -algebra morphism
from foldµF to the given function M . Dually, unfoldνF is the terminal F -coalgebra, and genνF

produces the unique morphism from M to unfoldνF .
The language described to this point is called λµν in [How92]; it is shown there that the reduction

rules for this language are confluent and strongly normalizing, hence only total functions may be
computed. In fact, the class of total functions expressible in λµν is quite large, including all
functions which are provably total in the logic ID<ω, which is first order arithmetic augmented
by finitely-iterated inductive definitions (see [BFPS81] for details about this logic; the relation to
λµν was presented in [How94]). This almost certainly contains every total function that would ever
be needed for practical purposes, as it contains at an early stage every function which grows no
faster than Ackermann’s notoriously fast-growing function. However, from a theoretical viewpoint
this is nowhere near the class of all computable functions (and as long as all computations are
terminating it can never hope to cover the entire class, because to do so would solve the Halting
Problem), and from a practical viewpoint the proof of expressibility of any total function bounded
by some fast-growing function does not lead to an efficient program, since the result will have the
running time of the bounding function!
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2.1 Contravariance in recursive types

A standard way to construct fixpoints of both covariant and contravariant functors is to consider
categories whose homsets have been enriched by an ordering structure [Wan79, SP82]. Under certain
additional conditions, these categories allow contravariant functors to be converted into ordinary
functors on a related category of embedding-projection pairs; the fixpoints of these functors will
then transfer back to the original category. This permits solutions to equations such as t = t → t,
giving a “universal” type which allows typing of terms from the untyped lambda calculus. For
another example, if we could solve the equation t = t → σ, obtaining a fixpoint τ and isomorphism
ϕ: τ → (τ → σ), we would be able to type the self-application involved in the Turing fixpoint
combinator Θυ of type σ ≡ (υ → υ) → υ:

(λw: τ. λf :υ → υ. f(ϕ w w f))(ϕ−1(λw: τ. λf :υ → υ. f(ϕ w w f))).

Unfortunately, this construction is inconsistent with our desire to have categorical products and
sums. In particular, we could use the above fixpoint combinator to find a term Θυ(λx:υ. x) of type
υ for any υ, including the (supposedly) empty type 0.

However, following recent work of Freyd [Fre90, Fre91, Fre92], this heavy machinery is not
necessary to handle contravariance. In fact, all that is needed to construct a fixed point for a
contravariant endofunctor F is to show that the covariant functor F 2 is algebraically bounded,
which means that it has both an initial algebra and a terminal coalgebra, and they are isomorphic
(Barr uses the term algebraically compact for the same concept in [Bar92]). Consequently, the only
addition needed to λµν to allow fixpoints of contravariant functors to be represented is a function
expressing this isomorphism.

2.2 Pointed types

We do not want to assert that all corresponding least and greatest fixpoints are isomorphic because
that would lead to the same inconsistency mentioned above. Instead, we will restrict the class of
functors for which the fixpoints will be isomorphic. The mechanism by which we choose to do
this is to identify a reflective subcategory of pointed objects and arrows, and say that only a least
fixpoint which is pointed will be isomorphic to its greatest fixpoint. We will not be more specific
about precisely which objects and arrows will be considered pointed, but the motivating example
is when we are dealing with a category of predomains, i.e., complete partial orders which do not
necessarily have bottom elements, and we take as the subcategory all those predomains which
do have bottoms, with only strict (bottom-preserving) functions as the arrows. In this case, the
reflector is the common lifting functor which adds a bottom element to a cpo.

A reflective subcategory A ⊆ C is determined by a functor R: C → A, the reflector, such
that there is an isomorphism of the homsets A(RX,Y ) ∼= C(X,UY ), natural in X and Y , where
U :A → C is the inclusion. (Because we are talking about arbitrary categories for the moment,
we will use upper-case letters to refer to objects, rather than the Greek letters which correspond
specifically to types as objects.) That is, R is left adjoint to U , which can also be stated by
saying that we have a natural transformation η: C

.
→ UR such that each arrow ηX :X → URX is

universal from X to U . Note that since U is the inclusion functor, we may as well speak of R as
an endofunctor on C (with values in A); in this case the data we must provide are, for each object
X of C,

• an object RX,

• an arrow ηX :X → RX, and
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• the map −∗ which takes any f :X → Y , for Y in A, and produces the unique f∗:RX → Y
such that f∗ ◦ ηX = f .

As constructs in the programming language, this entails adding the type σ⊥ for each type σ,
a term constructor ⌊M⌋ corresponding to η, and another term constructor (λ⌊x:σ⌋.M), which
corresponds to applying ∗ to the abstraction (λx:σ.M) and which we call the pointed abstraction.
These additions, together with their associated proof rules, are given in Figure 4. We do not specify
rules here for when a type is pointed, because in general it will depend on the particular choice of
A and C in the intended model, but we expect that suitable syntactic conditions may be applied in
a given situation which will at least establish that σ⊥ and µt. σ⊥ are pointed. A set of conditions
corresponding to the predomain model is given in [How92].

(⊥I)
Γ ⊲ M :σ

Γ ⊲ ⌊M⌋:σ⊥

Γ, x:σ ⊲ M : τ, τ pointed

Γ ⊲ (λ⌊x:σ⌋.M):σ⊥ → τ
(⊥E)

(νµ)
µF pointed

Γ ⊲ forceµF : νF → µF

(⊥β) (λ⌊x:σ⌋.M)⌊N⌋ = {N/x}M
M :σ⊥ → τ pointed, x not free in M

(λ⌊x:σ⌋.M⌊x⌋) = M
(⊥η)

(νµβ) forceµF M = foldµF (F (forceµF )(unfold νF M))

Figure 4: Syntax and axioms/inference rules for pointed types

Observe that the data for R make it a monad on C, with unit η and multiplication given
by id∗

RX :RRX → RX for each X; this is accompanied by an intentional similarity between our
additions to the term language and the computational lambda calculus described by Moggi [Mog89].
Of course, this result is not a surprise, since every adjunction produces a monad; however, the fact
that R is a reflector of a subcategory of C allows us to take advantage of some extra properties. In
particular, because the collection of pointed objects may extend beyond those which are obtainable
as an image RX of some object X, there may be more opportunities to remove the computation
type constructor. That is, for an arbitrary monad functor T , once it has been applied to an object
there is no general way to remove it, since the multiplication µ:TT

.
→ T can only collapse two

T ’s into one. However, the functor R may be absorbed into any pointed type Y , by the arrow
id∗

Y :RY → Y . An example is the aforementioned category of predomains, where not only the lift
of an arbitrary predomain is pointed, but also the cartesian product of any two pointed predomains
(whose bottom object is just the ordered pair of the bottoms of the two factors).

Now we are ready to finish our description of the language λµν⊥ by adding the function
forceµF : νF → µF whenever µF is pointed; see Figure 4. Together with an axiom that says
that forceµF is indeed an F -(co)algebra morphism from unfoldνF to foldµF , this is sufficient to
establish an isomorphism between µF and νF (since there is always a morphism in the other direc-
tion, given by either itµF unfold−1

νF or genνF fold−1
µF ; see below for the inverses to fold and unfold).

The intuition for calling this function force is that it provides the interface between the naturally
lazy coinductive type νF and the more concrete, observable (at least to the extent that other com-
ponents of F are observable types such as products or sums) inductive type µF , coercing one to
the other perhaps at the expense of non-termination if an attempt is made to force evaluation of
an “infinite” element.
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To summarize the assumptions we have made about a category which will model λµν⊥, it must
be cartesian closed, with finite sums; it must be algebraically complete and cocomplete for some
class of (covariant) endofunctors at least including all those which correspond to type constructors;
and it must contain a reflective subcategory of “pointed” objects and arrows, such that the functors
with pointed initial algebras are algebraically bounded. Unfortunately, the category of predomains
discussed before does not quite satisfy these requirements, because the functor FX = (X → B) →
B, where B ≡ 1 + 1 is the type of booleans, does not have a fixpoint (at least using ordinary
set theory) since the carrier sets of X and FX must have different cardinalities. If we relax the
completeness requirement slightly to disallow such functors then predomains are a valid example;
establishing general conditions which cover this is a subject for future work. Another interesting
example (which requires the same restriction to functors which will not lead to a cardinality blow-
up) is simply the category of sets, where the only pointed objects are the one-element sets, hence
we may take the constant 1 functor as the reflector. In this case there is no interest in the terms
for pointed types, so λµν⊥ reduces to the strongly normalizing language λµν .

For reference, we collect the reduction rules for λµν⊥ in Figure 5.

(→ β) (λx:σ.M)N −→ {N/x}M (λ⌊x:σ⌋.M)⌊N⌋ −→ {N/x}M (⊥β)

(×β1) π1〈M,N〉 −→ M [M,N ](ισ+τ
1 P ) −→ MP (+β1)

(×β2) π2〈M,N〉 −→ N [M,N ](ισ+τ
2 P ) −→ NP (+β2)

(µβ) itµF M(foldµF N) −→ M(F (itµF M)N)

(νβ) unfold νF (genνF M N) −→ F (genνF M)(MN)

(νµβ) forceµF M −→ foldµF (F (forceµF )(unfold νF M))

Figure 5: Operational semantics of λµν⊥

3 A fixpoint object

In [CP90], a fixpoint object for a monad (T, η, µ) is defined to be a structure (Ω, ς, ω), where
ς:TΩ → Ω is an initial T -algebra and ω: 1 → TΩ picks out the unique fixpoint of the arrow
ηΩ ◦ ς:TΩ → TΩ. This is used as the basis for a logical system for reasoning about fixpoint
computations. For example, given a fixpoint object for T , they construct a fixpoint combinator for
any type of the form α → Tβ.

In λµν⊥, we may find a fixpoint object for any monad (T, η, µ) such that µT is pointed. The type
Ω is just µT , and ς is foldΩ. We may construct ω by first coiterating the T -coalgebra η1: 1 → T1
to obtain the function genνT η1: 1 → νT , and then applying it to the seed 3 and forcing the result
over to Ω: forceΩ(genνT η1 3). This gives an “infinite” element in Ω; call it ∞. The desired global
object ω is then just ω ≡ (λx: 1. ⌊∞⌋).

For the special case T = R, where ητ is (λx: τ. ⌊x⌋) (and µτ is (λ⌊y: τ⊥⌋. y), although it is not
used here), if we define the term ∞ as above, then we may use it to construct a fixpoint combinator
for an arbitrary pointed type σ by defining

fixσ: (σ → σ) → σ ≡ (λf :σ → σ. itΩ(λ⌊x:σ⌋. fx)∞).
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That is, we simply iterate f∗:σ⊥ → σ over the object ∞. This is as direct an explanation of finding
fixpoints in a typed language as this author has seen.

4 Example: Recursive types reduced to inductive types

It is a relatively simple matter to reproduce in λµν⊥ the proofs from [Fre90] that the process of
finding a fixpoint of an arbitrary type expression, in which the type variable may appear both
covariantly and contravariantly, may be reduced solely to the problem of finding fixpoints for the
covariant case, provided the resulting covariant functors are algebraically bounded. The process
we follow is that, given a bifunctor T which is contravariant in its left argument and covariant in
its right, first we show that µt. T (−, t) is a contravariant functor whose fixpoints are also fixpoints
of T itself—that is, we may find fixpoints one variable at a time. Next, we need to show that if
F is a contravariant functor, then the fixpoints of F are the same as the fixpoints of the covariant
functor F 2, provided F 2 is algebraically bounded.

We omit the details of these constructions for this summary, and just note an example of this
process. In [How92, How93] this author presented types which correspond to universal types for call-
by-value and call-by-name versions of the untyped lambda calculus. Specifically, if V = V → V⊥

and N = (N → N)⊥, then we may use V and N respectively to give types to the cbv and cbn
calculi. In λµν⊥, we may find solutions to these type equations by taking

V ≡ µr. µs. (µt. r → t⊥) → s⊥ ≡ µr. F 2(r), for F (r) ≡ µs. r → s⊥

N ≡ µr. µs. ((µt. (r → t)⊥) → s)⊥ ≡ µr.G2(r), for G(r) ≡ µs. (r → s)⊥.

Figure 6 exhibits the remaining definitions needed for the simulation. For each untyped lambda
term M , the translations V[[M ]]:V⊥ and N [[M ]]:N will be terms of λµν⊥; it is shown in [How92]
that a simple argument based on standardization of reductions will verify that V[[M ]] →−→ V[[M ′]]
iff M →−→cbv M ′, and similarly N [[M ]] →−→ N [[M ′]] iff M →−→cbn M ′.

5 Hylomorphisms and inductive programming

There have been several recent efforts in the programming language community to use programming
techniques based on combinations of iteration and coiteration. Two which we will relate to our
system are Meijer’s hylomorphisms and Kieburtz’s use of weakly initial algebras and their duals.
Both of these proposals stay within what we have identified as the pointed subcategory, where
inductive and coinductive types coincide, so neither is able to take full advantage of the separation
between the well-founded operations of iteration and coiteration and the potential unboundedness
of an explicit force operation. Nevertheless, we have been significantly influenced by their suggested
style of programming, which reflects our intuitions about how the structure of data should guide
the structure of programs.

In the language of the Squiggol group, the functions defined using it are catamorphisms and
those using gen are anamorphisms ([FM91, MFP91, Mei92]). A hylomorphism is a combination of
these concepts which first uses an anamorphism to build up what Meijer refers to as a “call-tree”,
and then uses a catamorphism to reduce this tree to a final result (compare the Fibonacci example
of the introduction). A requirement for this is that the inductive types under consideration are all
isomorphic to the corresponding coinductive types. They observe that hylomorphisms necessarily
introduce the possibility of partial functions; when put in the framework of λµν⊥, where an explicit
use of forceµF is needed to tie together genνF M :σ → νF and itµF N :µF → τ to obtain the
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wrapV :F (V ) → V ≡ forceV ◦gen
F (V )
νF 2 F (foldV )

unwrapV :V → F (V ) ≡ it
F (V )
V F (fold−1

V )

wrapN :G(N) → N ≡ forceN ◦gen
G(N)
νG2 G(foldN )

unwrapN :N → G(N) ≡ it
G(N)
N G(fold−1

N )

inV : (V → V⊥) → V ≡ wrapV ◦ foldF (V ) ◦(V → unwrapV
⊥

)

outV :V → (V → V⊥) ≡ (V → wrapV
⊥

) ◦ fold−1
F (V ) ◦unwrapV

inN : (N → N)⊥ → N ≡ wrapN ◦ foldG(N) ◦(N → unwrapN )⊥
outN :N → (N → N)⊥ ≡ (N → wrapN )⊥ ◦ fold−1

G(N) ◦unwrapN

V[[x]] ≡ ⌊x⌋
V[[λx.M ]] ≡ ⌊inV (λx:V.V[[M ]])⌋
V[[M1M2]] ≡ (λ⌊f :V ⌋. λ⌊x:V ⌋. outV f x)V[[M1]]V[[M2]]

N [[x]] ≡ x
N [[λx.M ]] ≡ inN⌊λx:N.N [[M ]]⌋
N [[M1M2]] ≡ (λ⌊f :N → N⌋. f)(outN N [[M1]])N [[M2]]

Figure 6: Simulation of call-by-value and call-by-name untyped lambda calculi

hylomorphism from σ to τ , this follows from the necessity of µF being a pointed type. By making
this coercion explicit, our system also allows consideration of purely inductive or coinductive types,
for which all functions are total.

Kieburtz [Kie93] also uses hylomorphisms (although not by name) when he demonstrates that
a useful notion for inductive programming is that of finding homomorphisms from weak initial F -
algebras. That is, we may have a function g:F (τ) → τ which has a left inverse p: τ → F (τ), i.e.,
p(g(x)) = x for all x:F (τ); if g is weakly initial then we may construct an F -algebra morphism
from g to any given f :F (σ) → σ (which will not necessarily be unique). This will be possible if
we can just find a fixpoint of the map which takes h: τ → σ into f ◦ F (h) ◦ p. But this is just
the hylomorphism which first coiterates p and then iteratively applies f to reduce the call-tree
back down. Therefore, in λµν⊥, we may find weak initial F -algebras just by finding a left inverse,
provided F is algebraically bounded. Kieburtz also describes the dual case, but this still involves a
hylomorphism so it is not fundamentally different (just a shift of view between which of the given
functions is the algebra/coalgebra and which is the left/right inverse).

6 Conclusions

We have demonstrated how recent developments in category theory may be used as guidance in
designing a programming language with well-behaved recursive types. The language facilities for
recursion concentrate on the natural inductive/coinductive structure which is common to many of
the objects of interest to computer science. When general, unbounded recursion is needed, it is
introduced in a controlled manner through a function which forces the evaluation of a coiteration
process. To avoid inconsistency in a model which includes both extensional (categorical) products
and sums, this forcing operation is only allowed on a class of types which have been identified as
“pointed”. We believe that the result is an elegant language in which to describe and examine
recursive objects and algorithms.
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