Inductive, Projective, and Retractive Types

Brian T. Howard
Institute for Research in Cognitive Science
University of Pennsylvania
bhoward@saul.cis.upenn.edu

Abstract

We give an analysis of classes of recursive types by presenting two extensions of the simply-typed
lambda calculus. The first language only allows recursive types with built-in principles of well-founded
induction, while the second allows more general recursive types which permit non-terminating compu-
tations. We discuss the expressive power of the languages, examine the properties of reduction-based
operational semantics for them, and give examples of their use in expressing iteration over large ordinals
and in simulating both call-by-name and call-by-value versions of the untyped lambda calculus. The
motivations for this work come from category theoretic models.

1 Introduction

An examination of the common uses of recursion in defining types reveals that there are two distinct classes
of operations being performed. The first class of recursive type contains what are generally known as
the “inductive” types, as well as their duals, the “coinductive” or “projective” types. The distinguishing
characteristic of the types in this class is that they each have an associated rule of well-founded induction.
Common inductive types are lists, trees, and the natural numbers, whereas standard examples of projective
types are computable infinite streams and the natural numbers plus a point at infinity. The second class of
recursive type contains what we refer to as the “retractive” types, whose distinguishing characteristic is that
they contain elements which represent non-terminating computations. The standard example of a retractive
type is the universal type which can be given to terms of an untyped lambda calculus.

We will present and discuss two functional languages containing these recursive types. The first, which
we refer to as A*”, adds only the inductive and projective types to a simply-typed lambda calculus with finite
products and sums. This language is essentially identical to the language AM# developed independently by
Greiner [Gre92]; both A* and MMMV were inspired by Hagino’s work with categorical datatypes [Hag87a,
Hag87b]. The obvious non-deterministic operational semantics for A*” is shown to be both confluent and
strongly normalizing, hence the non-determinism is inessential and any of the common reduction strategies
will be normalizing.

The second language, A, extends A\ in two ways. It includes the retractive types as well as the
inductive and projective recursive types, and it also adds an explicit lifting constructor, for introducing
types for which evaluation may not terminate. Lifting is essential in describing which type expressions are
allowed in the body of a retractive type definition. The standard approach to introducing recursive types in
a language involves modifying the semantics of some of the type constructors so that all recursive domain
equations will have solutions; typically this means that the sum or product types will not be “extensional” (see
for example [GS90, Plo85, SP82]). Our work developed from a desire to have recursive types in a language
whose equational semantics includes extensionality for both products and sums (i.e., both products and
sums are “categorical”). It is well-known that such a semantics in which all recursive domain equations have
solutions must be inconsistent, hence we must restrict the class of solvable domain equations. Explicitly
introducing lifted types enables us to do this by defining the class of “pointed” type expressions, which
intuitively are those that contain a “bottom” element, representing non-termination.

Since the operational semantics of A*¥ is strongly normalizing, only total functions are representable. We
show that all of the natural number functions which are provably total in Peano Arithmetic are expressible

in A*. There are also expressible functions which are not provably total in PA, hence the language is
more expressive than Godel’s system T of primitive recursive functionals. We show that all of the functions
expressible in A*¥ are provably total in second-order arithmetic, by a translation into Girard’s system F;
however, there are algorithms expressible in A*” which do not seem possible in system F', such as a constant-
time predecessor.

A fixed point operator may be defined for pointed types (such as the flat natural numbers) in A7, hence
we may express all partial recursive functions over such types. Because of the possibility of non-termination,
reduction order becomes important in giving an operational semantics for A**. We show that a leftmost
reduction strategy is normalizing. Using this fact, we give translations of both the call-by-value and call-by-
name versions of the untyped lambda calculus into A*? and show that the translations preserve the reduction
relation.

By distinguishing these classes of recursive types, we have thus exhibited a Turing-equivalent functional
programming language which contains a very expressive terminating sublanguage. By using the type system
in this way to identify all the possible sources of non-termination in a program, we hope to make feasible more
effective techniques for proving properties of programs, and perhaps also allow more powerful optimization
procedures.

This is a revised and condensed version of material which appeared in the author’s doctoral dissertation
[How92].

2 Syntax of the language M\
Type expressions may be any of the following, where we use o, 7, ... as metavariables for type expressions:
t|0|1]|o+7|oxT|o—T|put.o|vto.

The types of the language will be the closed type expressions, i.e., all occurrences of type variables ¢ must
be in the scope of a binding operator p or v naming the same variable. Not every type expression o may
be the body of an inductive (1) or projective (v) type — the bound type variable ¢ may only occur strictly
positively in o, that is, it may not appear in any subterm of the left argument of an arrow.

We now give an inference system for typing assertions I' > M: o for well-formed terms of A*”. We start
with the usual rules for variables, A-abstraction and application:

(var) To>TIO
I'sM:o

(add var) Ixz:to M:o.

(= Intro) I'z:o>M:7

' (Az:io. M):0—T1

I'M:0—71, T'bN:o
' MN:T.

(— Elim)

The constants and term constructors corresponding to the given type constructors come from the categorical
interpretation of the types. For example, the (+ Elim) rule provides the mediating arrow from the sum o +7
to an arbitrary type v, given arrows from each of ¢ and 7 to v.

(0 Elim) ¢ >0v: 0—w.

(4 Introy) D> tTTi0—0+ T

(4 Introz) Doy "0 + 1,

(+El') ' M:0—v, T'tbN:t—wv
im

I's [M,N]:0 + 7—wv.
(1 Intro) '><:1

(x Elimq) P70 x T—0
(x Elims) Do 0 x T>T

I'sM:o0, T'bN:T
I'>(M,N):o x .

(x Intro)

We interpret the action of substituting a type 7 for a free variable ¢ in a type expression ¢, which we
write as {7/t}o, as the application of a functor to an object. For example, the interpretation of o =t x v is
the endofunctor F such that if the objects interpreting 7 and v are A and B, respectively, then the object
interpreting {7/t}c = 7 x v is F(A) = A x B. By abuse of notation we will often write F(7) for the type
{7/t}o; correspondingly we will write uF instead of ut.o (and likewise for v), where the underlying type
expression o is left implicit.

Finally, we have the terms associated with the inductive and projective types. The categorical interpre-
tation of an inductive type puF is an initial F-algebra, i.e., an arrow ¢ from F(uF) to pF such that for any
other F-algebra f: F(X)—X there is a unique F-algebra morphism h:p— f, that is, an arrow hy: pF'—X
such that the following diagram commutes:

Fur) 201, g
® f
ukE y X

We therefore introduce the following terms corresponding to ¢ and h¢, for each “functor” F:
(1 Intro) O fold ,p: F'(uF)—pF

(1 Elim) 0o it)p: (F(1)—T)—pF—T.

It has long been known that the initial algebra ¢ is actually an isomorphism; indeed, the arrow hp(,) names
its inverse (we will prove this below within the terms of A*¥). Thus we do not need to add a term to A*¥
which provides an inverse to fold, r; however, to obtain a better simulation of primitive recursion it will
prove useful to consider an expanded language **’ which also contains a family of unfolding operators:

(u Elim") 0> unfold , : pF'—F ().

This is discussed further in Section 5.

We have the dual situation for projective types. The interpretation of vF is a terminal F-coalgebra, i.e.,
an arrow ¢: vF—F(vF) such that for every F-coalgebra g: Y —F (Y) there is a unique arrow kg: Y —vF such
that

y—2 . p
g (4
F(Y) Tkg)» F(vF)
commutes. The constants corresponding to i) and k are
(v Elim) 0 > unfold,, p: vF—F (VF)
(v Intro) 0> newl p: (1—F(1))—7—VF.

In the language M’ we also add the inverse to unfold, -, just as we added the inverse for fold uF above:

(v Intro) 0> fold,p: F(vF)—vF.

To extend the category-theoretic intuition behind the terms of A\, we will write the composition of
two “arrows” (terms of function type) M:7—wv and N:o—7 as M o N:o—w, which is an abbreviation for
(Az:0. M(Nz)), where x does not occur free in either M or N. We will also make use of the identity term
for this composition (up to provable equality, as described in the next section), defining id” = (A\x: 0. z), for
each type o.

We have already mentioned the interpretation of substitution in a type expression as being the application
of a functor to an object; we may extend this effect in a natural way to define the application of a functor
to an arrow (i.e., a term). For our purposes, it will be more useful to apply a functor to an internal arrow,
that is, a term of function type; because our intended model is a cartesian closed category (hence we have
extensional finite products and function spaces) this is entirely equivalent to defining functor application on
arbitrary terms and their typing contexts. Thus, given a functor F' and a term M:oc—7, we will produce
a term F(M): F(oc)—F(7). In addition, after the equations are introduced in the next section, we will be
able to prove that F(id) = id and F(M o N) = F(M) o F(N), completely justifying our referring to F as a
functor. The basic idea for this comes from Hagino [Hag87a, Hag87b], although his presentation is somewhat
more difficult to read and treats only strictly positive functors.

The definition of F(M) proceeds by cases on the structure of the body type F(t) = o

o if F(t) = v, where t does not occur free in v, then F(M) = id";

o if F(t) =t, then F(M) =

G(t) + H(t), then F(M) = [t 0 G(M), 15 o H(M)];

G(t) x H(t), then F(M) = XMa:G(0), y: H(0)). (G(M)z, H(M)y);
G(t)—H(t), then F(M) = Af: G(0)—H (o). H(M) o f o G(M°P) (see below);

o if F'(t

(
(
o if F(t
(
(

)
)
)
oith)
)

o if F(t) = ps. G(s,t), then F(M) = it, "} o) J01d .5,y OG(F (1), M));

o if F(t) =wvs.G(s,t), then F(M) = newfs(.‘g(s)T)(G(F(o), M) o unfold,,; c;(s,0))-

For the system as defined in this section, F' will always be strictly positive, so the type expression G(t) will
not depend on ¢ in the case F(t) = G(t)—H (t) above. To handle the language A**, however, we include the
mechanism for dealing with arbitrary covariant functors F'. The metanotation M °P is meant to indicate a
term of type T—o, the opposite of M:o—7. Since in general we have no way of forming an opposite term,
the only rules we have are that opposite is an anti-involution, i.e., the opposite of the opposite is the original
term: (M°P)°P = M, and opposite is contravariant with respect to composition: (M o N)°P = N°P o M°P
(from which it is easy to prove that also id°? = id). In forming the subterm G(M°P), if G is contravariant
then by using this rule we will only ever need M; if M°P appears in the fully expanded term F(M), then F
must not have been covariant.

3 Equational proof system for A\

Now that we have introduced the syntax of A*¥, it is time to give a formal semantics for the language, in
the form of a set of equational axioms and proof rules. The categorical interpretation will continue to be
our guide in describing the equations that hold between terms. We start by listing the usual structural
rules necessary to have an equivalence relation that respects term formation, including adding and renaming
variables:

(ref) ’'cM=M:o
() I'sM=N:o
sym ToN=M:0

I'sM=N:0, I'bN=P:o

(trans) ToM=P:o

Izio>M=N:T1

(abs) I'>(Ax:0. M) =(Aa:0.N) : 0—T1
(app) I'sM=N:o—1, TprP=Q:0o
app ToMP=NQ:7
I'sM=N:o
(add var) Izt M =N :0o
() I'>(Az:o. M) = (M\y:o{y/z}M) : o—7, it y g FV(M).

The rest of the axioms and inference rules come in two forms; in terms of the categorical interpretations
of the type constructors, the (3) axioms state that the arrows provided for the type make a particular
diagram commute, while the (1) axioms and rules establish that those arrows do so uniquely. For example,
the (+f) axioms assert that the mediating morphism [M, N|: 0 + 7—wv properly factors the arrows M: oc—v
and N:7—wv through o + 7, while the (4+7) axiom ensures that all terms with this property must be equal.

(0m) o0 =M :0—w.

(+51) I'>[M,N]ouy =M :0—v

(+052) I'>[M,N]owy=N:17—>v

(+n) P>[Mowv,Mow]=M:0o+17—0.

(1n) r-o=M:1.

(x61) F>m(M,N)=M :0o

(x02) I>m(M,N)=N:1

(xn) s (mM,moM)=M:0xT

(—0) I's (Ax:o. M)N = {N/z} M : T,

(—n) ' (Az:io. Mx) = M : o—T, for x € FV(M).

(uB) L' (it} M) o fold,p = M o F(it],p M) : F(uF)—,

(T'> N ofold,r = M o F(N) : F(uF)—r

1) ToN =it M : pF—r.

(vB) I'> unfold,p o(newlp M) = F(newl,n M) o M : T—F(VF)
I'> unfold,r oN = F(N)o M : 7—F(vF)

(v) ' N =new,p M : T—vF.

For the extended language A"’ we also have axioms asserting that the extra terms unfold wr and fold, are
inverses for fold, r and unfold, j, respectively:

(13 I > unfold,, o fold, p = id" ") . F(uF)—F(uF)
(un) I'> fold , - o unfold . = id"" . yF—uF
(vB) T > unfold,, o fold, » = id") . F(UF)—F(vF)
(vn) I'> fold, o unfold, = id"F . vF—UF

As promised in the previous section, we may now prove some lemmas about the behavior of our abbre-
viated terms.

Lemma 3.1 Application of a “functor” F to a term preserves composition and identities, i.e., F(MoN) =
F(M)o F(N) and F(id) = id (thus justifying use of the term functor for substitution in a type).

Proof. By induction on the structure of F'; we will only show a few of the more interesting cases. For the
induction to go through, we actually need to prove more — namely, that this result can be extended to
functors with more than one argument, e.g., G(M o N, P o Q) = G(M, P) o G(N, Q); this extension is quite
easy and giving the full details would not add enough to the presentation to be worth the extra notation.
We assume that I'> M: 7—wv and I'> N: 0—7 are well-formed for some T'.

o if F(t) = G(t) + H(t), then

F(M)o F(N) [F(M)oF(N)ou,F(M)o F(N) o]
[F(M) o n o G(N),F(M)owoH(N)
= [1oGM)oG(N),ta0H(M)o H(N)]
[

t10G(M o N), 30 H(M o N))

= F(MoN);
also, F(id?) = [11,t2] = idF@)
e if F(t) = G(t)—H(t), then
F(MoN) = \f:F(o).

[
> >
2333
Q Q

= M :F(o). F(M)(F(N)f)

for the identity, we have

F(id°) = Mf:F(0).H(id%)o fo G((id?)°?)
= M:F(0). id®? of 0id%
id")

o if F(t) = us.G(s,t), then

F(M)o F(N) o fold g,

= F(M)o foldp(,)oG(F
= fOldF(v oG(F(v), M)
fold g,y oG(F(v), M) o
foldF(U)oG(F(v),MoN)oG(F(M)oF(N),o),

where the interchange G(F (M), 7)o G(F (1), N) = G(F(v),N)o G(F(M), o) in the middle is possible
because both sides are equal to G(F (M), N), noticing that, e.g., G(F(M),7) = G(F(M),id"™) and
using the multiple argument form of the induction hypothesis. From the above we may then use (un)
to deduce that F(M)o F(N) = ztigg) (fold gy oG(F'(v), M o N)) = F(M o N). For the identity, we
must show that F(id?) = ztiggg fold g is the identity; but id?@)ofoldF(U) = fold g, oG (i d"() o)

by the induction hypothesis, so id”(®) = t?gg; fold gy by (un).

We may now use this lemma about functors to prove the statement above that the terms corresponding
to the arrows hp(,) and kp(y) are inverses for fold,, r and unfold, ., respectively.

Lemma 3.2 The term itf}”F) F(fold,) is an inverse for fold,p, and newf;VF) F(unfold,r) is an inverse
for unfold,,

Proof. For variety, we will show the proof for the projective type v F'; the inductive case is quite similar. Let
us refer to the term newf}”F) F(unfold,) as refold; then what we wish to show is that refold o unfold, =
id"" and unfold,p o refold = id" ™). First note that unfold,p orefold = F(refold) o F(unfold,) =
F(refold o unfold,) by (v8) and the previous lemma; thus the second equation follows from the first. Since
unfold,, o refold o unfold,,p = F(refold o unfold,) o unfold,r, we may use the (vn) rule to conclude that
refold o unfold, . = new" k% unfold, . The right-hand side of this equation is equal to the identity, by using
(vn) again on the equation unfold . o id"" = F(id"") o unfold,;, hence we are done. L]

4 The reduction system \.”

The reduction rules we will take for A are essentially the () axioms of the previous section, oriented in
the direction of “computation.” Since we do not include any (n) rules, the form of some of the axioms
will be changed to better match our notion of normal form — instead of dealing with functional terms and
composition, we will apply such terms to dummy arguments to get rid of the o’s. Here are the reduction
rules:

(+51)r [M, N](t;P) — MP

(+062)r [M, N](:2P) — NP

(XB1)r T (M,N) — M

(X B2)r mo(M,N) — N

(—=B8)r (Az:0. M)N — {N/x}M

(1B)r it,p M(fold,p P) — M(F(it,p M)P)
(VB)r unfold,, p(new],p M P) — F(new],p M)(MP).

For the language extended with unfold,r and fold,r we have two additional rules, producing the system
PYLSE

(/’LB/)T unfOldyF(fOIdpF P) — P

w3, unfold,, (fold ,r P) — P.

The first important theorems of this section are that A*” is confluent and strongly normalizing. As a
result, we will be able to speak of the unique normal form A*¥ (M) of an arbitrary term M, independent of
any specific reduction strategy.

Theorem 4.1 (Strong Normalization) There is no infinite sequence of reductions My — My —
Mz — -+ in M.

Proof. In the next section we give a translation of *” into Girard’s System F, with the property that if
M — N in M then M —™* N in F. Since F is strongly normalizing [GLT89], this establishes that *”
is also, since otherwise we would be able to construct the infinite reduction sequence M; —s+ M, —+
M; —t ...in F. []

Theorem 4.2 (Confluence) If M —» N and M — P, then there is a term @ such that N —» Q and
P — Q, for reduction in \M¥.

Proof. We only need to show that A\ is weakly confluent, i.e., if M — N and M — P then N and
P have a common reduct, since by a version of Newman’s theorem [New42] the fact that it is also strongly
normalizing implies that it is confluent. It is easy to see that A% is weakly confluent, since there are no
critical pairs, hence we are done. [

Although we have not worked out the proofs in detail, it should be easy to show that M**’ is also confluent
and strongly normalizing. The proof of strong normalization is made somewhat clumsy by the fact that
there is no obvious way of translating the extra reductions of A**" into System F.

The author’s doctoral dissertation [How92] discusses in more detail the relation between the operational
semantics A" and the equational proof system given in the previous section. Briefly, we first take the
observable types to be 1, 0 + 7, o x 7, and pF, where o, 7, and F(v) are all observable types (provided v
is observable). Then we define a result to be a closed normal form of observable type, and find that A*" is
adequate for computing results of programs:

Theorem 4.3 If 0> P = R : o is provable for R a result, then P — R in A",

Proof. It is sufficient to show that if @ P =, Q: o is provable, and Q — R for R a result, then P — R,
where £, means that exactly one (n) rule is used (along with whatever structural rules are needed). The
theorem then follows by the normal form property of — and induction on the number of (1) rules.

The problem then is to construct a reduction sequence P — R from the given sequence Q —~ R. If
the (n) rule is (+7), (xn), or (—n), then this chiefly consists of mimicking the reduction from @ on P, either
adding or deleting steps corresponding to the destruction of an (n) redex by a () reduction. One difficulty
arises in these cases from the non-linearity of (+n) and (xn) — if Q contains the subterm [M o 1, M o 19]
where P only has M, for example, then we must choose to follow the reduction on only the first, say, of the
two components of the choice in reducing P; since R is a result and reduction is confluent, we may make
this choice arbitrarily.

We are thus left with the case of the (1) step for one of the recursive types. We will consider (un) —
the situation for (vn) is entirely similar. If P contains a subterm M and Q contains it N in the same
position, then in constructing the reduction from P we will need to use the hypothesis from the (1) rule, i.e.,
Mofold, r = NoF(M). Now, for every (1/3) step in the original reduction of the form it} N'(fold ,p K) —
N'(F(it;,r N')K), we must replace it with the equational step M'(fold ,p K) = N'(F(M')K), where M" and
N are corresponding residuals of M and N. We must then go back and apply the current theorem to convert
this new equational proof of P = R into a reduction P — R; we avoid circularity by noting that the height
of the new proof tree for P = R is shorter than before, measured in the number of nested applications of the
() and (vn) rules. In the situation where P contains it) N and @ contains M we go through the same
process, with the additional requirement that the reduction from @ must be rearranged so that if M is a
A-abstraction it will only be -reduced when applied to arguments of the form fold ,p K. [

Corollary 4.4 If > P = Q : o is provable at observable type o, then M (P) = M (Q).
Proof. Trivial, since reduction is confluent and strongly normalizing. [

If we define observational congruence as I'> M ~ N:o if ¥ (P[M]) = A\ (P[N]) for every well-formed
program context P[|, then we find that the full equational proof system, including the extensional rules, is
sound for reasoning about programs:

Corollary 4.5 The equational proof system for M is sound for observational congruence.
Proof. Follows directly from the previous corollary. [

Therefore, we conclude that A*¥ provides a suitable operational semantics for the language A*”.
Some examples of observable types are:

e bool =1+ 1, the booleans; the only results of this type are true = 110 and false = 12<.

e nat = pt. 1+ t, the set of natural numbers; results of this type take the form zero = fold(11<) or
suce(n) = fold(1an), where n is another such result.

e natlist = pt. 1+ nat x t, the type of lists of natural numbers; the results of this type are of the form
nil = fold(11<) and cons(n, £) = fold(t2(n,).

5 Comparison with Systems T and F

The question naturally arises of what functions are expressible in *”. We speak here of functions on the
natural numbers, as given by the (observable) type nat described in the previous section. Since MY is
strongly normalizing, all the functions must be total. We can enumerate the terms of A*¥, therefore we
must not be able to represent all of the total functions (since that set is not recursively enumerable). In this
section we will see that all of the functions that are provably total in Peano arithmetic are definable, as well
as some that are not. We will also show that A is strongly normalizing by simulating it in System F; since
the functions expressible in F are exactly those which are provably total in second-order arithmetic, we thus
have a range in which the answer must fall:

Theorem 5.1 The class of functions definable in A*¥ properly includes those which are provably total in
Peano arithmetic, and is included in the class of functions provably total in second-order arithmetic.

The rest of this section will be devoted to the proof of this theorem.

5.1 Simulation of System T

To prove the first part of this theorem, we first show how to simulate Godel’s system T of primitive recursive
functionals of finite type [G6d58] in A*¥ | as it is well-known that the functions expressible in T are precisely
those which are provably total in Peano arithmetic. We have already seen how to represent the natural
numbers with the type nat = ut.1 4+ t; the only difficulty is finding an appropriate term to implement a
general recursor, since *” only provides an iterator. That is, we need a term R™: 7—(7—nat—71)—nat—T,
for each type 7, such that

Raf0—a

R7a f (succn) —> f(R" a fn)n.

In M we are only given an iterator — for the type nat we get a term Z": 7—(7—7)—nat—7 by defining
Z7 o f = it] ,[\O. a, f]; its reduction behavior is given by

Z"af0—>a

Z" a f (sucen) —= f(Z7 a fn).

The extra argument n to the function f in the inductive case of the recursor is what differentiates the two;
it allows the predecessor function to be defined with the recursor simply by R"* 0 (Ax: nat. A\y: nat. y).

Since we have product types in A*”, we can use a standard trick to simulate the recursor with the iterator
— we define an auxilliary function which will return a pair consisting of the desired function result as well as
the corresponding argument value, thus making the second argument to f available. That is, we may define
the same function on natural numbers as given by R" a f with the term m o Z7 o’ f’, where ¢’ = (a,0) and
f'zn = (f xn, succn). Extensionally this produces the same function, but intensionally it is not the same
algorithm as given by the recursor. To see this, construct the definition of the predecessor function using
the iterator and observe that it takes n steps to build up the predecessor of (succn), whereas the recursor
can find the answer in constant time.

In the extended language A**’ we can avoid this mismatch by using unfold,,,, to define the predecessor:
pred = [X$. 0, id]ounfold,, ;. Using this we may now define a recursor which has the same reduction behavior
as R7, by essentially passing the needed second argument down from the top, instead of building it up from
the bottom. If we define the term R}, a f: nat—7 to be

(AMn:nat. Z" 77 (\x: nat. a)(Ag: nat—7. \m: nat. f(g(pred m))(pred m)) nn),

then we may prove the following theorem:

Theorem 5.2 A function defined with the recursor R, will have the same running time in \“Y' (within a
constant factor) as the equivalent function defined with RT will have in T.

Proof. All we need to show is that the two reduction rules for R™ in T can be performed in constant
time in **'. We omit a number of steps showing the details of reducing Z and pred; it is easy to verify
that the total number of steps remains independent of the size of the input. Also, we abbreviate the term
Z"7T (N nat. a)(Ag: nat—7. Am: nat. f(g(pred m))(pred m)) as Q7 /-

R,af0 — Q00
—» (Az:nat.a)0

— a

R} a f (succp) — Qg p(succp)(succp)
— (Ag:nat—7. Xm: nat. f(g(pred m))(pred m))(Qg ; p)(succp)
— (Am:nat. f(Qg ; p (pred m))(pred m))(succ p)

— f(Qq,;p (pred(succp)))(pred(succp))
— f(Qqupp)D-

This last term is one (—/) step from f(R}, a f p)p, which corresponds to the term we would get after one
reduction step from R a f (succp) in T. n

5.2 Iteration over large ordinals

We have already mentioned the relation between System T and the functions that are provably total in Peano
arithmetic. Another characterization of the functions expressible in T is that they are the functions definable
by transfinite recursion up to some ordinal a < €y, where ¢ is the least ordinal € such that ¢ = w® (see
[Kre59] or [Sch75]; a good text covering this subject is [Ros84]). We will show that A*” is more expressive
than T, thus completing the proof of the first part of Theorem 5.1, by constructing the Hardy function
H,,, which requires iteration up to €g itself [BW87]. The method we use to represent ordinal numbers and
construct the hierarchy of Hardy functions is based on an example given by Coquand and Paulin [CP90].

To define H, for a < ¢y we will need to choose a fundamental sequence for each limit ordinal < ¢p; that
is, for each limit ordinal A we need an increasing, natural number indexed sequence (A[0], A[1],...) of ordinals
less than A whose limit is A. A convenient choice makes use of the Cantor normal form, which writes each
ordinal a < ¢y uniquely as w® + - - - 4+ w +m, for some natural numbers k and m and ordinals (themselves
in normal form) 0 < o < ... < a3 < a. If v is a limit ordinal, then we take the ordinal w®* + - - - + w**[n]
as the nth element of the fundamental sequence for a, where w?t1[n] = w? - n and W [n] = WM for A a
limit. We extend this definition to € by taking [0] = 1 and eo[n + 1] = wl™. Now we may define the
functions H, as follows:

Hy(n) = n
Hoti(n) = Ha(n+1)
Hy(n) = Hyp(n).

The type of notations for countable ordinals may be specified as the inductive type ord = ut.1 4+t +
(nat—t); the constructors are thus

ordzero = fold 4 ot3: 1—ord
ordsucc = fold ,,, ot3: ord—ord
lim = fold 4 ot3: (nat—ord)—ord.

ord

(Although we have not formally introduced them, the constants ¢} are the natural extensions of the binary
injection functions to the case of m-ary sums; they may be declared as syntactic sugar for the obvious
definition in terms of the binary case, depending only on whether + is taken to associate to the right or the
left.) The interpretation of lim is that it creates an ordinal given a function which specifies the fundamental

sequence for the ordinal; for example, we may define w = lim inord, where inord = itszci[ordzem, ordsucc]

10

is the natural injection from nat to ord, since (0,1,2,...) is the fundamental sequence for w. Addition,
multiplication, and exponentiation of ordinals may be defined as follows:

ordplus = (Aa: ord. it"3[(\O. a), ordsucc, lim)])
ordtimes = (Ao ord. it 4[ordzero, (A\B: ord. ordplus Ba), lim))

ord

ordezp = (Aa: ord. it 4[ordone, (\3: ord. ordtimes fav), lim)]),

ord

where ordone = ordsucc o ordzero. A function that creates an exponential stack of n w’s when applied to
a natural number n is omegaerp = itzg[ordone, ordezp w|; we may thus define a notation for ¢y by stating
€0 = lim omegaexp.

The following term represents the Hardy function H: ord—nat—mnat in *:

iU (NG, id™ ™), (Nf: nat—nat. f o succe), (\g: nat—nat—nat. \n: nat. gnn)|.
We will demonstrate the use of these definitions by evaluating He,(0):

Hep0 = H(lim omegaexp)0
— (H o omegaezp)00
—» H(ordone<)0
= H(ordsucc(ordzero<)) 0
— ((H(ordzero<)) o succ) 0
— (id™ o succ) 0

— succ.

Being able to construct H, is sufficient for showing that A*” can express more than the primitive recursive
functionals of T, but there is no reason to stop at €y. Indeed, since we may define the Veblen hierarchy
of functions ¢, : ord—ord for all a: ord, we have a system of notation for all the ordinals less than T'y, the
first “strongly critical” ordinal (see [Gal91] for a very readable discussion of the significance of T'y). The
particular Veblen hierarchy to which we refer is that starting from ¢o(3) = w”; then the function ¢, for
a > 0 enumerates the common fixed points of all the functions ¢, for v < a. For example, ¢ enumerates
the fixed points of ¢y = A\3.w?; these are known as the epsilon numbers, and indeed the first fixed point
©1(0) is the ordinal €y discussed above. We will not give the term which computes ¢ here, but a detailed
description of how to define it in terms of fundamental sequences is given in [CW83].

The ordinal Ty is still not the largest ordinal we can express in A*”. As Miller shows in [Mil76], we
may extend the definition of ¢, to uncountable ordinals « that satisfy certain conditions. For example,
g is the function which enumerates the strongly critical ordinals (so ¢ (0) = T'g), where 2 is the least
uncountable ordinal. We can express {2, and many other uncountable ordinals, in A*” by introducing the
type ord; = ut.1 4+t + (nat—t) + (ord—t). As for ord, the first three components of the body of the
recursive type represent zero, successor ordinals, and (nat-indexed) limit ordinals. But ord; also has a
fourth component which allows ord-indexed limits. If we define lim] = fold ,,q, ot: (ord—ordy)—ordy, and
make the obvious definition for inord;: ord—ord;, then we may set {2 = lim} inord;. We may then define
the usual arithmetic operations on ord;, allowing the construction of such ordinals as Q% Q% and even
ear1 = Q% with which we may go back and construct the countable (but very large) ordinal ¢, 4100,
known as “Howard’s ordinal.”!

We may make one more step in the production of ever-larger ordinals. By generalizing the construction of
the types ord and ord;, we may construct the class ord,, of abstract tree ordinals (see [Wai89]), all of which
will have cardinality X,,, by the inductive type pt. 1+t + (nat—t) + (ord—t) + (ord1—t) + - - - + (ordp,—1—t).
Elements of this type may be defined as limits of order type up to €2, the nth regular ordinal beyond ¢ = w.
Further discussion of these ordinals is far beyond the scope of this paper; for more details see for example
[Mil76, Waig9].

1No relation to the author.

11

5.3 Simulation in System F

The second part of Theorem 5.1 follows from a translation of A into Girard’s system F [Gir71, GLT89,
Rey74]. The essential part of this translation is the well-known representation of finite sums and products
and initial and terminal fixed points in F (see for example [GLT89] or [Has89]), although the details of
the translation for inductive and projective types are original. We have already noted that the functions
expressible in F are precisely those that are provably total in second order arithmetic, so the fact that all the
functions computable by A*¥ are also computable in F gives us an upper limit on the expressibility of A*¥.
We suspect that the inclusion is proper, although we do not know an example of a function computable in F
and not in M. Interestingly, there are algorithms computable in M**’ which do not seem to be computable
in F — the simplest example is the constant time predecessor. This is a symptom of a more general lack in
System F', namely, that types such as products, sums, and least fixed points are not extensional; as a result,
many desirable equations between terms are not provable.

System F extends the simply typed lambda calculus A™ with type variables and the polymorphic type
Vt.o. Formally, we add the following term formation rules:

I's>M:o .
(VY Intro) 5 (AL M) Vi o for ¢ not free in I"

I'> M:Vt.o

(v Btim) I'> Mr:{r/t}o.

The metavariables ¢ and 7 now refer to arbitrary type expressions formed with — and V; that is, they may
contain free type variables. The type abstraction operator A binds type variables in its body in the same
manner as A binds regular variables, thus we need equational rules for A analogous to those for A:

(¥ abs) 'bM=N:o
s Ts (AL M) = (At.N) : Vt.o
v) I'sM=N:Vt.o
ap I'>Mr=Nr:{r/t}o
(Va) I'> (At. M) = (As. {s/t}M) : Vt.o, if s not free in M
(V5) e (At. M) ={7/t}M : {7/t}o
(Vn) I'> (At. Mt) = M : Vt.o, for t not free in M.

As usual, the reduction relation obtained by directing the (—f) and (V) axioms from left to right will be
denoted —; if a term M reduces to another term N in one or more steps, then we write M —™ N.

We will now start to give a translation from A*¥ into F, such that if I'> M: o is a well-formed term in
M then T'> M:G is a well-formed term of F. Type and term variables will stay the same under trans-
lation, as will lambda abstraction and application. The translation of the binary sum type o 4+ 7 will be
Vt. (G—t)—(T—t)—t, where ¢ is not free in @ or 7; the empty type 0 is represented by V¢. ¢t. Dually, the binary
product o X 7 translates to Vt. (6—7—t)—t, while the singleton type 1 becomes Vt.t—t. The translation of
terms for these types is given in Table 1, where of course it is understood that all of the variables introduced
on the right hand side are new.

Before we give the translation for the inductive and projective types, we will need a few abbreviations.
It will be convenient to continue our practice of treating a type expression o as a functor with respect to
substitution for a type variable ¢, thus we will write F(7) to mean {7/t}7; it is an easy exercise to show
that F(7) = F(7). Similarly, if M is a term of type 7—wv, then we write F(M) for the term F(M) of type
F(7)—F(v). The “functor” F will no longer preserve composition or identities, since most types under the
translation into F are no longer extensional (see below), but it will suffice for the purposes of this section
because we are only interested in showing that the 3 reductions of *” are strongly normalizing.

We will also need the existentially quantified type 3t. 0. This may be expressed in terms of V and — as
Vs. (Vt.c—s)—s, where s is a fresh type variable. A term of the existential type 3t. o is like a pair (r, M)

12

M:o M:c

T.o r.0
(Ar:o. M):o—T1 | (A\v:57. M):5—7F
MN:1 MN:7

L1:0—=0+T

Lo:T—0 + T

[M,N]:oc+7—v | (\v:0 +7.20M N): o + 7—T
Ov:0—wv Az:0. 20): 0—v
M0 X T—0 Az:0 X T. 20 (A\y: 7. A\2:T. y)): 0 X T—T

~ o~ o~ o~ o~ o~ o~ o~

Moi 0 X T—T A0 X T.2T(A\Y: . A2:T. 2)): 0 X T—T
(M,N):o xT At Af:G—T—t. fMN):oc X T
&l At Azt z): 1

Table 1: Translation of function, sum, and product terms

of a type 7 and a term M of type {7/t}o; we will exploit this analogy by introducing (as in [GLT89]) the
syntactic sugar

(r,N) = (As. \z:Vt.o—s.aTN):3t.o
Mty z:0). M) = (Ay: 3t o.yu(At. Az 0. M)): (3t. 0)—v,

where in the latter definition the term M has type v. It will be convenient to have this pattern matching syn-
tax for terms of (translated) product type as well; thus, the F term (A(x: o, y: 7). M) will be an abbreviation
for

(Ap:Vt. (o—1—t)—t.pv(Ax: 0. Ay: 7. M).

If we also write (N, P) for (At. \f: o—7—t. f N P), then it is easy to see that both of these pattern matching
terms behave as expected under reduction, i.e.,

Mt,z:0). M)(T,N) —T {N/z}{r/t}M
Mz:o,y: 7). M)(N,P) —* {P/y}{N/z}M.

The general translation for an inductive type ut. o was essentially given by Bohm and Berarducci [BB85],
although they were mainly concerned with representing iteratively defined functions over the term algebra
of an algebraic signature, touching only briefly on iteration at higher types. The corresponding translation
for a projective type vt. o was given independently by Hasegawa [Has89] and Wraith [Wra89]. Here are the
translations for the types:

Vt. (E—>t)—>t

. (t—o) x t
3t Vu. ((t—7)—t—u)—u

=
~
Q
Il

N
~
Q
1l

The translations of the terms for these types are given in Table 2.
It is now a simple matter to verify that this translation preserves reduction in A*”.

Lemma 5.3 If M — N in M, then M —+ N.

Proof. We will show two of the cases; the rest of the proof is entirely similar. We omit most types for
brevity.

13

tF(uF). AN F(t)—t. f(F(itt))): F(uF)—pF

it)p itT = (As. \f: F(s)—=s. A\v: pF.x s f)7: (F(F)—7)—pl—7
unfold, p | (Mt, (f:t—7,x:t)). F(mewt f)(f z)): vF—F(F)

new, p nmew T = (As. \f:s—F(s). \v:s. (s, (f, 2)))7: F—F (7)) —=T—vF

M:o M:
fold , (A\x

Table 2: Translation of inductive and projective terms

[M,N](;P) = (\z.2T M N)((\y.At.A\f. \g. fy) P)
— ot (AL AL A fP)TMN
—t+ MP
= MP
unfold(new™ M N) = (Mt {f,z)). F(mewt f)(fx))
((As. Ag- Ay (s, (9,y))) T M N)
O {a). Frew f)(f), (7, W)

—* F(mew7 M)(M N)
F(new™ M)(MN)

This lemma is precisely what we needed to complete the proof of strong normalization for A*¥, since if there
were an infinite reduction sequence from a term M in A:¥ then we would be able to construct an infinite
reduction from M in F. System F is strongly normalizing (see [GLT89], for example), so we are done.

6 Syntax of the language \'”

Now we describe the language A**, which can handle mixed-variant recursive type expressions at the cost of
introducing the potential for non-termination. We start by adding two type constructors to A*: the lifted
type o, which corresponds to the operation of adding a bottom element to a cpo, and the retractive type
pt. o, which corresponds to the recursive type found by the usual Smyth-Plotkin construction [SP82]. Note
that, whereas the types of A* could be thought of as sets, the motivating example for the types of A* is the
category CPO of complete partial orders (not necessarily with least elements). A more general categorical
setting in which to find examples is the class of algebraically complete CPO-categories, as described by
Freyd in [Fre90, Fre91, Fre92]; we differ from Freyd in considering cpo’s that may not have least elements,
hence our CP O-categories include his as the special case where everything is pointed. In this setting, we may
view the retractive types as being constructed in the algebraically compact subcategory of pointed objects
and strict maps; we will write more about this connection in a future paper.

Not all type expressions ¢ may appear as the body of a retractive type, just as the bodies of inductive
and projective types were restricted in the previous chapter to type expressions strictly positive in the type
variable being bound. To state the restriction for retractive types we need to formally introduce the concept
of a pointed type. Intuitively, a pointed type is one which contains a bottom element, i.e., a least element
with respect to the information-content ordering on the type. Following our cpo interpretation of the type
constructors, we may see that the types 1 and o are always pointed; it will also turn out that the retractive
type pt. o is always pointed. If the types o and 7 are both pointed, then the product o x 7 will be pointed,
since the pair consisting of the bottom elements of o and 7 will be the least element under the pointwise
ordering of o x 7. Similarly, if 7 is pointed, then the function type c—7 will be pointed for any o, since the
constant bottom function is less defined than any other element of c—7. The empty type 0 and the disjoint
sum o + 7 will never be pointed; we will not consider a type such as o, + 0 to be pointed, despite the fact

14

that its cpo representation has a least element, since an element of a sum type necessarily conveys at least
the information that it comes from one or the other summand.

Since a recursive type pt.o (or, mutatis mutandis, vt.o or pt.o) is isomorphic to the unfolded type
{pt.o/t}o, it is reasonable to consider a recursive type to be pointed whenever the body ¢ is. We have two
choices when defining the pointedness of type expressions with free variables. If ¢ is pointed no matter what
types are substituted for the free variables, then it is said to be unconditionally pointed. If the pointedness of
o depends on that of a free variable ¢, as for example in 7—t, then it is conditionally pointed with respect to
t. Thus, our rule for inductive types will be that ut. o is pointed if ¢ is unconditionally pointed. We may go
further with projective and retractive types, saying that vt.o and pt. o will be pointed if ¢ is conditionally
pointed with respect to t. The reason for this difference comes from the respective constructions of the
recursive types in CPO: an inductive type uF essentially results from an infinite number of applications
of the functor F to the initial object 0, while the projective and retractive types start from 1. If F' is only
conditionally pointed, i.e., F(7) is only pointed if 7 is, then none of the finite approximations 0, F(0), £%(0),
..., to uF will be pointed; by continuity we thus expect that uF itself will not be pointed. By contrast, all of
the approximations 1, F(1), F2(1), ..., to vF and pF are pointed, so the limit types will be as well. Finally,
for a retractive type pt. o to be well-formed, ¢ may be of mixed variance in o, but ¢ must be conditionally
pointed with respect to ¢.

For a retractive type pF, we have terms which give the two directions of the isomorphism pF ~ F(pF):

(p Intro) 0> fold ,p: F(pF)—pF

(p Elim) 0> unfold ,p: pF'—F(pF).

If o is a pointed type, then we may use these terms to define a least fixed point operator fiz”: (6—0c)—0:
(Az:v. Af:o—0. f(unfold, zzf))(fold,(Ax:v. \f: o—0. f(unfold, zxf))),

where v = pt. (t—(0—0)—0c). This is essentially a typed version of Turing’s combinator © (see [Bar84], for
example), where the retractive type allows the self-application of x to be typed.

We motivate the terms for the lifted type o, by considering the left adjoint L to the forgetful functor
U into CPO from the subcategory CPPO | of pointed cpo’s and strict continuous functions. Lifting arises
from this adjunction by taking the interpretation of o, to be the application of the endofunctor UL to the
object corresponding to o; the effect of this is to add a bottom element to . One way of describing the
adjunction L - U is by giving a natural transformation n: CPO — UL, the unit of the adjunction, such that
each arrow nx: X —UL(X) is universal from X to U, i.e., for any other arrow f: X —U(Y") there is a unique
arrow ¢g: L(X)—Y such that f = U(g)onx (see [Mac71], for example). If we have a judgement >ptd o which
asserts that o is a pointed type, then we obtain the following term judgement rules:

>ptdo
(bottom) 75 170
I'sM:o
(L Intro) NS
(L Elim) zio>M:7, p>ptdr

I'> (A|z:io]|.M):0,—T.

In comparing our language to Moggi’s Computational Lambda Calculus, we note that our treatment of
lifting differs from Moggi’s in two important respects. First, because we are dealing with the specific operation
of lifting instead of an arbitrary monad of computations, we will get more terms and more provable equations.
Specifically, by introducing strict functions and defining lifting as an adjunction, we will find some equations
that hold for all pointed types, whereas if we only defined lifting as a monad they would only hold for lifted
types. The second difference is that in Moggi’s system, all functions return values of the computation type;
we require lifting to be indicated more explicitly, so that functions are expressible which do not represent
computations of the lifted type (indeed, the entire sublanguage A*” is concerned with defining functions
which do not return lifted types, because they always terminate).

15

7 Equational proof system for \'”

We will extend the proof system given earlier for A*¥ to provide a formal semantics for the types and terms
just introduced. Because A-* can express all partial recursive functions on the natural numbers, we cannot
hope to obtain a complete proof system. We will only give a fairly weak system here; a stronger system
involving approximation orderings and fixed point induction is given in the author’s thesis [How92].

First we must add a congruence rule for the strict abstraction, since it is a new variable-binding operation:

Iz:obM=N:T1
> (Aaz:o|.M)=(A|z:0|.N):0,—>T

(str abs) if 7 is pointed.

For a retractive type pF', we simply take the two equations establishing that fold ,r and unfold , are inverses:

(0B) 0> unfold , o fold ,p = id"**) . F(pF)—F(pF)
(pm) 0> fold ,» o unfold ,p = id”" : pF—pF.

For the lifted type, the adjunction gives us the following:
(LB) > (Az:io|]. M)|N| ={N/x}M : 7
(LB > (Az:io]. M)Lo+ =177

(Ln) ' M1°t=17:71

g > (A z:o|.M|z])=M :0,—>T1
However, after some experience using these rules we discover that they are not quite strong enough to
represent our intuition about lifting. In particular, they do not seem to reflect the desired property that the

only elements of the lifted type o, are the elements of o plus bottom. Therefore, we will use the following
more powerful inference rule in place of (Ln):

P>M1°t =N1*:7, TyziovrM|z|=Nlz|:7
I'sM=N:0,—T.

for x ¢ FV(M).

(Lext)

It is easy to see that taking N = (A|z:0]. M |z]) in this rule lets us derive (Ln). We do not have any good
categorical motivation for this rule, yet without it we have been unable to prove equations such as

A z:o]. Ay:7]. MYP)Q = (Ny:o]. (Alz:7]. M)Q)P,

where and y are not free in P or). Our intuition about strict abstraction says that this should hold,
i.e., that the order of strict evaluation should not matter as long as both arguments must be evaluated, and
indeed this equation is easy to prove using the “reasoning by cases” made possible by the (Lezt) rule. We
take this defect of the categorically motivated rules as an indication that more work needs to be done to
fully understand the lifted types.

Now we may prove a partial extension of the fact that substituting a term in a type behaves like functor
application; note that a stronger proof system is required to handle the case where the functor contains a
retractive type:

Lemma 7.1 If F(t) does not contain any subterms of the form ps.v, where t occurs free in v, then appli-
cation of F to a term preserves composition and identities, i.e., F(M oN)=F(M)o F(N) and F(id) = id.
Proof. Most of this lemma was proved in Section 3 as Lemma 3.1; we only need to consider the case where
F(t) is a lifted type expression. If F(t) = G(¢t)., then
F(M)oF(N) = F(M)o(Aa:G(o)]. |G(N)z])
(Alz: G(o)]. F(M)((Alz: G(o)]. [G(N)z])[x]))
= (Alz:G(0)]. Aly: G(7)]. |G(M)y])|G(N)x])
= (A:G(o). [GIM)(G(N)x)])
= F(MoN);

similarly, F(id?) = (A|z: G(0)]. |z]) = id"® L]

16

The impact on previous results of the restriction on the form of F' in this lemma is that the proof of Lemma
3.2, which states that the defined terms for unfold,r and fold,p are inverses for the primitives fold ,p and
unfold,, -, is only valid for functors of the restricted form. This provides another argument for including the
inverses as primitives, as in *¥’.

In the interpretation of A** in the category CPO, we observe that application of the lifting functor to
the initial object, i.e., the empty cpo, yields a terminal object, i.e., a cpo with exactly one element. It is an
interesting consequence of our rules for lifting that this is true in all models of *:

Lemma 7.2 The types 01 and 1 are isomorphic.

Proof. We will show that the terms 1%-~1 and 1'% are inverses. Since both terms are strict, either
way of composing them will result in a bottom function, hence we only need to show that 117! = id" and
100700 — 4% The first equation is trivial, since by the (1) rule, all terms of type 1—1 are equal to
(AO. ©). For the second equation, since both sides are strict functions, if we can prove x: 0> 19+704 |z] =
id®* |x] : 0, then by using the (derived) strict abstraction congruence rule and (_L7) we are done. But this
last equation is true, since for any term z: 0> M: o we find by (—03) and (0n) that M = (Az: 0. M)z = 0%z
is true, i.e., all such terms are equal. [

This isomorphism is an instance of a general condition for showing that lifting is a monad with zero, a
concept introduced by Wadler [Wad90]. The monad natural transformations n:C — T and pu: TT — T receive
their names “unit” and “multiplication” in part because of an analogy with the corresponding concepts in a
monoid; the diagrams which must commute for a monad may then be seen as statements that multiplication
is associative and has the unit as an identity:

T T
X T X rx X prx <X px
|
HUTXx Hux id Hx id
|
TTX -~ TX TX

Wadler observed that many common monads also have zeroes with respect to multiplication. In a category
with a terminal object, we may present a zero for a monad by giving a natural transformation ¢: 1 — T such
that the following diagram commutes:

Cx

T
| -SIX, oy

Cx Hx (x0T

}

TX)

T1

where &7 is the unique arrow from 71 to 1. For the lifting monad, it is easy to see that the bottom arrow
from 1 to X, will act as a zero, since the multiplication px collapses both the bottom element LX)+ and
the lifted bottom element | L%+ | down to the bottom of X .

This author and Michael Johnson [Wad91] independently noticed the following special case of this defini-
tion: if a category with a monad (T, n, 1) and a terminal object 1 also has an initial object 0 and if there is an
isomorphism |:1—T0, then the natural transformation whose X component is the arrow TOx o 1:1-TX
will act as a zero for the monad. This follows by a simple diagram chase, using the uniqueness of the ar-
rows Ox: X—1 and Ox:0—X, plus the fact that Opg is an inverse for the given arrow L. The preceding
lemma thus allows us to confirm the above observation about the zero of the lifting monad, since the term
corresponding to TOx o | is (A|z: X|. [O0%z]) o L1704 which is equal to 1.'~*+ by the (13") rule.

8 The reduction system)\’

We may now consider an operational semantics for A1?, given as the obvious extension to A“¥. The full
reduction system A\:-* will still be confluent, although it will of course no longer be normalizing. A notion of

17

evaluating a term must therefore be relative to some strategy for choosing a reduction path. We will show
that a lazy strategy is computationally adequate with respect to finding normal forms of programs.

As usual, we obtain the reduction rules from the equational proof system by directing the (3) axioms in
the direction of decreasing complexity of terms. Here is the full list of rules:

(+061)r [M, N](1,P) — MP
(+062)r [M, N](12P) — NP

(XB1)r i (M,N) — M

(X B2)r mo(M,N) — N

(=B)r (Az:o. M)N — {N/x}M

(49 ity M(fold, - P) — M(F(it,.r M)P)
(vh)., unfold, p(new,r MP) — F(new,r M)(MP)
(1B')r unfold ,p(fold,,p M) — M

(VB unfold - (fold ;. M) — M

(PB)r unfold ,p (fold ,p M) — M

(LB)r Mz:0|. M)|N| — {N/z}M

(LB)r Ax:o]. M) 19+ — 17,

For the proof of confluence we may simply observe that A\ is a regular combinatory reduction system
(CRS), as introduced by Klop [Klo80]. A combinatory reduction system (CRS), as introduced by Klop
[K1o80], is a generalization of term rewriting systems to include variable binding operators and substitution.
Our system A} is a CRS with two binding forms, each of which binds one variable: (Az.-) and (A|x].-). In
fact it is a regular CRS, because it is left-linear (no meta-variable appears more than once on the left-hand
side of a rule) and non-ambiguous (there are no critical pairs).

Theorem 8.1 (Confluence) If M — N and M — P, then there is a term Q such that N — Q and
P—Q.

Proof. Immediate from [Klo80], Theorem II.3.11. L]

Klop also shows that if a regular CRS has the additional property that it is left-normal, then it satisfies
a standardization theorem. The definition of left-normal is that all of the constants be to the left of any
meta-variables in the reduction rules. Intuitively, if a system is left-normal, then evaluating terms from left
to right will not allow any redexes to be missed.

Our system \-” as it stands is not left-normal; for example, in the (+/3;), rule, the constant ¢; appears
to the right of the meta-variables M and N. To see concretely how this would affect a left-to-right reduction
strategy, consider the term [id, fiz id](id(:1<)). If we employed a strategy of strict left-to-right evaluation,
then the reduction would get hung in a loop trying to evaluate the right arm of the choice, never reaching
the (—03), redex at the right, which must be evaluated to complete the (+0;), redex and reach the normal
form <.

The non-left-normal rules are (+51)r, (+52)r, (1B)r, (LB)r, and (LF'),. There are two easy ways to fix
these and obtain a left-normal reduction system. Either we may rearrange the syntax of terms, so that these
rules become left-normal by Klop’s definition, or we may modify the meaning of “left” with respect to the
ordering of subterms. We will describe the second method here; the first is explored in the author’s doctoral
dissertation [How92].

To change the left-to-right order of evaluation, we will alter the definition of when one redex, R, is to the
left of another, S, written R < S. The effect of this will be to direct reduction into the appropriate part of a
potential redex (for example, the test P of a choice expression [M, N]P) so that the reduction does not get
needlessly sidetracked. The definition of R < S that we start with is that a subterm R of a term M (which
we write R C M; if R # M then as usual we write R C M) is to the left of another subterm S C M if one
of the following conditions holds:

18

e SCR;

e RC M; and S C M, for some subterm [M;, Ms] of M;

e RC M; and S C M, for some subterm (M, Ms) of M; or
e RC My and S C Ms for some subterm My My of M.

Our modification will be to the last clause, based on whether or not the term M; is a strict abstraction,
choice, or iterated function:

o if R C My and S C M, for some M1 My C M, then R < S if My # (A|a:0].P), [P,Q], or it,r P,
otherwise S < R.

Now, following Klop, we may define standard reductions and the process of standardization. If we have
a reduction sequence R: My — M; — ..., then let us form a labelled sequence by the following process: if
the redex contracted in the term M; is R, then we label every redex S < R; descendents of labelled redexes
keep their labels until they are themselves reduced. For example, here is the labelled form of a reduction
from a term discussed above:

lid, fix id)(id(10))* — [id, id(fiz id)](id(110))*
— ([id, id(fix id)](:10))"
(

— ([id, fix id](110))*
— id <
— .

A standard reduction is one in which no labelled redexes are contracted. The above reduction is not standard
because two labelled redexes contract, producing the second and fourth lines respectively. An equivalent
standard reduction is

[id, fir id](id(110)) — [id, fiz id](110)
— Wd <
— .
An anti-standard pair of reduction steps is a reduction Rq: My — M; — My which is not standard.
The process of meta-reduction is the replacement in a reduction R of an anti-standard pair R; by an

equivalent standard reduction Ry to obtain a new reduction R’; we write R = R’. For example, in the
reduction sequence

R: (Az:o. id(x,z))(id O) — (Az:o. id(z,)0 — id(O,0) — (O, O,

the first two reduction steps form an anti-standard pair; the pair may be replaced by a standard reduction
to obtain the reduction sequence

R’ (\azo. id(z,2))(id O) — id(id O, id O) — id(<O, id O)
s id(0,0) — (0,0,

which is intuitively closer to a standard reduction than R. One can imagine how repeating this process of
meta-reduction will eventually produce a standard reduction sequence.
This intuition is formalized by the following theorem:

Theorem 8.2 (Standardization) For every \-* reduction sequence R: M — N there is a standard
reduction sequence Rg: M — N, obtained as a normal form of meta-reduction.

19

Proof. See [Klo80], Section I1.6.2.8. In fact, Klop does not give the proof for the fully general case of a
left-normal regular combinatory reduction system, he only indicates that it is possible. However, a minor
modification to A:-? will put it in the form of a left-normal term rewriting system plus lambda abstraction,
for which Klop does provide a full proof. The required change is that the binding operation of strict
abstraction (A|z:o]. M) be replaced by the ordinary lambda abstraction (Az:o . test?z(Ax: 0. M)), where
test?: o, —(oc—7)—7 is a new function constant. The action of test” is given by the following reduction
rules:

test, [M|[N — NM
testt AN — 1

that is, it strictly evaluates the first argument and then applies the second argument to the result. It is easy
to see that this modified system will have essentially the same reduction behavior as A:?; in particular, the
standard reductions in the two systems will be isomorphic. [

As a corollary we find that a leftmost strategy for \:-* is normalizing, using the adjusted definition of
“left”:

Corollary 8.3 (Normalization) If there is a A" reduction M — N where N is a normal form, then
the reduction sequence starting at M in which the leftmost redex is contracted at each step will eventually
reach N.

Proof. By the Standardization theorem, there is a standard reduction R from M to N. Suppose that
there is some step in R4 in which the contracted redex is not leftmost; then since the reduction is standard,
no descendents of the redexes to the left can ever be contracted, nor can they be erased, hence N must
contain uncontracted redexes, contradicting the fact that it is a normal form. Therefore R; is the desired
normal reduction sequence. [

Note that this result is weaker than the computational adequacy result for A*¥. If there is some reduction
from a term to a normal form then we are guaranteed to find it, but there is no guarantee that the reduction
system is strong enough to produce a normal form whenever the initial term is provably equal to one.

9 Example: call-by-name and call-by-value

In this section we present two retractive types n and v which serve respectively as universal types for call-by-
name and call-by-value versions of the untyped lambda calculus [Plo75]. This provides a syntactic solution
to the problem of finding non-trivial universal types which corresponds to the domain models presented by
Boudol in [Bou91].

The type n is given by pt. (t—t) 1, which reflects the fact that the only way the call-by-name calculus can
fail to terminate is when trying to evaluate the head of an application to get an abstraction. By contrast,
the type v is given by pt.t—t, , which reflects the fact that it is the process of application of an abstraction
to a term which may not terminate, if the argument never reduces to a value. Since in the call-by-value
calculus we also have the possibility that evaluating the head may not terminate either, we actually use v
as the universal type.

To put this in more concrete terms, consider the following translations from A to A*:

N(@) = z:n
N(Az. M) fold, | Az:n. N (M)|:n
N(MN) = AppY N(M)N(N):n

V() = |z]:ve
V(Az. M) = |fold,(Az:v.V(M))]: vy
V(MN) = AppY V(IM)V(N):v,,

20

where App™ = (Mfold, | f:n—n]. f) and App" = (M| fold,(f:v—v1)]. A|z:v]. fz) In evaluating an ap-
plication M N in either call-by-name or call-by-value, M must first reduce to an abstraction. The strict
abstractions on f in the App combinators will ensure that this evaluation takes place first. In the case of the
call-by-value translation, the additional strict abstraction on z forces the evaluation of the argument next;
in call-by-name, the function f is simply applied to the argument right away.

To formalize the connection with the call-by-name and call-by-value calculi, recall from [Plo75] that the

reductions 2% and %% are built up from the axioms
B) (Ax. M\)N — {N/x}M

(Bv) M. M)V — {V/x}M, V a value,

respectively, where a value is either a variable or an abstraction (we will omit the optional set of constants
and d-rules for simplicity). Then we may use standardization to prove the following theorem:

Theorem 9.1 M 2% N iff N(M) — N'(N), and M <2 N iff V(M) — V(N).

Proof. The forward direction of each part proceeds by induction on the length of the reduction; we only
need to show that N'(A\z. M)N) — N({N/xz}M) and V((Az. M)V) —» V({V/x} M), for V a value. We
will only show the details of the second, since the first is very similar (and easier):

V((Ae. M)V) = App" |fold ,(\z:v. V(M) |V(V)
— (Alziv]. Qz0. V(M) 2)V(V);

since V is a value, V(V') must be of the form | V] for some term N, hence the strict application may reduce,
leading to { N/x}V(M). Now, examination of the definition of V(M) reveals that this substitution is identical
to the term V({V/x} M), as desired.

In the other direction we will make use of the standardization theorem of the previous section. Again,
we will only give the details for the more complex call-by-value case. We will proceed by induction on the
structure of M and the length of the reduction sequence. If M = z, then V(M) = |x], which is a normal
form, so M = N and we are done. If M = (Az. P), then V(M) = |fold,(Az:v.V(P))], so the only possible
reduction is to |fold,(Az:v.Q)|. For this to be V(N) we must have that @ = V(P’) for N = (A\z. P’); by
the induction hypothesis then we know that P <%, P’ and hence M %% N.

The remaining case is that M = PQ. If V(M) = App" V(P)V(Q) reduces to V(N), then either V(N) =
AppY V(P)V(Q'), whence M cby, P'Q’ = N by the induction hypothesis, or the App" must participate in
the reduction. For this to be true, the standardization of the reduction must look like the following:

AppY V(P)V(Q) — App [fold,(Az:v. V(P))|V(Q)
— (Alziv]. Az 0. V(P))2)V(Q)
— (Alziv]. Az 0. V(P))2)|Q1]
— {Q1/z}V(P) =V({Q'/x}P")
— V(N),

)z
)z

where V(Q') = |Q1]. This uses the fact that in any standard reduction from V(Q), the first term in the
reduction sequence which is of the form |@Q1| must in fact be V(Q’) for some value @’. By the induction
hypothesis we thus have the corresponding reduction sequence

M=PQ % (\.P)Q
by, (Az. P)Q'

cbv
— {Q/x}P’
cbv N.

21

References

[Barg4]
[BB85]

[Bou91]

[BWS7]

[CPY0]

[CW83]

[Fre90]

[Fre91]

[Fre92]

[G5d58]

[Gal91]

[Gir71]

[GLT89]

[Gre92)

[GS90]

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, 1984.

C. Bohm and A. Berarducci. Automatic synthesis of typed A-programs on term algebras. Theoretical
Computer Science, 39:135-154, 1985.

G. Boudol. Lambda-calculi for (strict) parallel functions. Technical Report 1387, INRIA, January
1991.

W. Buchholz and S.S. Wainer. Provably computable functions and the fast growing hierarchy. In
S.G. Simpson, editor, Logic and Combinatorics, volume 65 of Contemporary Mathematics, pages
179-198. American Mathematical Society, 1987.

T. Coquand and C. Paulin. Inductively defined types. In P. Martin-Lof and G. Mints, editors,
COLOG-88, volume 417 of Lecture Notes in Computer Science, pages 50-66. Springer-Verlag, 1990.

E.A. Cichon and S.S. Wainer. The slow-growing and the Grzegorczyk hierarchies. Journal of
Symbolic Logic, 48(2):399-408, 1983.

P. Freyd. Recursive types reduced to inductive types. In Fifth Annual IEEE Symposium on Logic
in Computer Science, pages 498-507, 1990.

P. Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedicchio, and G. Rosolini,
editors, Category Theory: Proceedings, Como 1990, pages 95-104. Springer-Verlag, 1991.

P. Freyd. Remarks on algebraically compact categories. In M.P. Fourman, P.T. Johnstone, and
A .M. Pitts, editors, Applications of Categories in Computer Science: Proceedings of the London
Mathematical Society Symposium, Durham, 1991, pages 95—-106. Cambridge University Press, 1992.

K. Godel. Uber eine bisher noch nicht beniitzte Erweiterung des finiten Standpunktes. Dialectica,
12:280-287, 1958. An English translation by W. Hodges and B. Watson appeared in Journal of
Philosophical Logic, 9:133-142, 1980.

J.H. Gallier. What’s so special about Kruskal’s theorem and the ordinal T'y? A survey of some
results in proof theory. Annals of Pure and Applied Logic, 53(3):199-260, 1991.

J.-Y. Girard. Une extension de linterpretation de Godel a 'analyse, et son application &
I’élimination des coupures dans ’analyse et la théorie des types. In J.E. Fenstad, editor, Second
Scandinavian Logic Symposium, pages 63-92. North-Holland, 1971.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1989.

J. Greiner. Programming with inductive and co-inductive types. Technical Report CMU-CS-92-109,
Carnegie Mellon University, January 1992.

C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science. North-Holland, 1990.

[Hag87a] T. Hagino. A Categorical Programming Language. PhD thesis, University of Edinburgh, 1987.

[Hag87b] T. Hagino. A typed lambda calculus with categorical type constructors. In Category Theory in

[Has89]

[How92]

Computer Science, pages 140-157, 1987.

R. Hasegawa. Parametric polymorphism and internal representations of recursive type definitions.
Master’s thesis, Research Institute for Mathematical Science, Kyoto University, 1989.

B.T. Howard. Fized Points and Extensionality in Typed Functional Programming Languages. PhD
thesis, Stanford University, 1992.

22

[K1080]

[Kre59)

[MacT71]

[Mil76]

[New42]

[Plo75]

[Plo85]

[ReyT4]

[Ros84]

[Sch75]

[SP82]

[Wad90]

[Wad91]
[Wai89)]
[Wrag89]

J.W. Klop. Combinatory Reduction Systems. PhD thesis, University of Utrecht, 1980. Published
as Mathematical Center Tract 129.

G. Kreisel. Interpretation of analysis by means of constructive functionals of finite types. In
A. Heyting, editor, Constructivity in Mathematics, pages 101-128. North-Holland, 1959.

S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathe-
matics. Springer-Verlag, 1971.

L.W. Miller. Normal functions and constructive ordinal numbers. Journal of Symbolic Logic,
41(2):439-459, 1976.

M.H.A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of Mathe-
matics, 43(2):223-243, 1942.

G.D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science, 1:125—
159, 1975.

G.D. Plotkin. Denotational semantics with partial functions. Lecture notes, C.S.L.I. Summer
School, Stanford, 1985.

J.C. Reynolds. Towards a theory of type structure. In Paris Colloquium on Programming, volume 19
of Lecture Notes in Computer Science, pages 408-425. Springer-Verlag, 1974.

H.E. Rose. Subrecursion: Functions and Hierarchies, volume 9 of Oxford Logic Guides. Oxford
University Press, 1984.

H. Schwichtenberg. Elimination of higher type levels in definitions of primitive recursive functions
by means of transfinite recursion. In H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium,
73, pages 279-303. North-Holland, 1975.

M. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain equations. STAM
Journal on Computing, 11:761-783, 1982.

P. Wadler. Comprehending monads. In ACM Conference on LisP and Functional Programming,
pages 61-78, 1990.

P. Wadler. Private communication, March 1991.
S.S. Wainer. Slow growing versus fast growing. Journal of Symbolic Logic, 54(2):608-614, 1989.

G.C. Wraith. A note on categorical datatypes. In D.H. Pitt, D.E. Rydeheard, P. Dybjer, A.M.
Pitts, and A. Poigné, editors, Category Theory and Computer Science, volume 389 of Lecture Notes
in Computer Science, pages 118-127. Springer-Verlag, 1989.

23

