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Abstract

It is common to listen to songs that match one’s mood. Thus,
an AI music recommendation system that is aware of the
user’s emotions is likely to provide a superior user experience
to one that is unaware. In this paper, we present an emotion-
aware music recommendation system. Multiple models are
discussed and evaluated for affect identification from a live
image of the user. We propose two models: DRViT, which ap-
plies dynamic routing to vision transformers, and InvNet50,
which uses involution. All considered models are trained and
evaluated on the AffectNet dataset. Each model outputs the
user’s estimated valence and arousal under the circumplex
model of affect. These values are compared to the valence and
arousal values for songs in a Spotify dataset, and the top-five
closest-matching songs are presented to the user. Experimen-
tal results of the models and user testing are presented.

1 Introduction
It is clear that emotions influence behavior and preferences.
Some AI systems are intentionally human-aware, consider-
ing characteristics including emotions to improve the user
experience. Music recommendation is one area in which
emotions should logically play a role, as people frequently
listen to music that matches their current mood (Juslin, Slo-
boda et al. 2001). An AI system that is aware of emo-
tions expressed through music can make recommendations
to help users regulate their feelings or boost their current
mood (Taruffi et al. 2017). More precisely, we distinguish
here between emotions, a feeling inside that is not directly
observable, and affect, the external expression of emotions,
particularly in the face. In this study, we develop a music
recommendation system aiming to identify affect from the
user’s face and recommend songs determined to fit that af-
fect most closely. By estimating affect, the system aims to
be emotion-aware.

This paper is organized as follows. Section 2 discusses
prior work on music recommendation systems and affect
identification. Section 3 describes the major components of
our system. Section 4 contextualizes our affect identifica-
tion models in neural network research, focusing on involu-
tion and dynamic routing for vision transformers. Section 5
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describes our experimental setup for testing the affect iden-
tification models, with the experimental results and analysis
in Section 6. Section 7 describes the process by which the
identified affect is used to recommend songs, and the results
of user experiments are presented in Section 8. Section 9
provides conclusions and future work for the research.

2 Related Work
Many AI techniques have been applied to music recommen-
dation. Ji et al. (2015) propose a time-based Markov embed-
ding to observe user music selections over time for further
music recommendations. Logan (2004) uses an acoustic-
based similarity measure to group related songs into “song
sets” for recommendation. Hsu et al. (2016) propose a nat-
ural language processing model called CNN-rec to recom-
mend music based on the user’s recent listening history. Hu
and Ogihara (2011) use an autoregressive integrated mov-
ing average (ARIMA) model to estimate the genre, year,
and “freshness” of the user’s song selections and thus learn
the user’s preferences. Samuvel, Perumal, and Elangovan
(2020) extract an “EigenFace” vector expressing important
portions of the user’s face. This is fed to a support vector ma-
chine to estimate affect and recommend music. In another
support vector machine approach, James et al. (2019) pre-
process facial images into a sequence of “action units” used
to classify emotion for music recommendation.

There is also much related work in affect identification.
For example, convolution-based models are typical in im-
age tasks, and can be applied to affect identification specif-
ically (Giannopoulos, Perikos, and Hatzilygeroudis 2018).
The very deep convolutional neural network (VGG) archi-
tecture achieves 73.28% accuracy on the 8-class FER2013
dataset (Khaireddin and Chen 2021). Given the range of
human emotion, however, many researchers prefer the Af-
fectNet dataset (Mollahosseini, Hasani, and Mahoor 2017),
which in addition to a classification target, further differ-
entiates emotions along two continuous axes: valence and
arousal. We discuss these values further in Section 3. The
original model applied to AffectNet is AlexNet, obtaining
an RMSE of 0.37 and 0.41 for valence and arousal, respec-
tively (Mollahosseini, Hasani, and Mahoor 2017).

Since AlexNet’s application to AffectNet, many im-
provements in the state-of-the-art have been made. BReG-
NeXt (Hasani, Negi, and Mahoor 2020) replaces the short-
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cut bypass in ResNet (He et al. 2016) with a function with
a bounded derivative to improve the gradient in back prop-
agation. BReG-NeXt achieves state-of-the-art performance
with valence RMSE of 0.2668 and arousal RMSE of 0.2482.
Another architecture, the Visual Transformers with Feature
Fusion (VTFF) model, can classify affect at 61.85% accu-
racy (Ma, Sun, and Li 2021), beating AlexNet’s 58% accu-
racy. Furthermore, Li et al. (2021b) propose a mask vision
transformer architecture and get an 8-class AffectNet clas-
sification accuracy of 64.57%. It appears, then, that trans-
former techniques can be effective for affect identification
tasks. Thus we explore our own application of vision trans-
formers further in Section 4.3.

We are not aware of any prior application of involution
to affect identification, but the development of involution
generally in prior research is described in Section 4.2 as we
present our own involution-based model.

3 System Overview
The system consists of three major components:

Image Acquisition: Users press the “Capture” button to
allow the system to take their picture. The system uses the
Haar Cascade (Viola and Jones 2001) algorithm to detect
and extract the face from the image.

Affect Identification: The image is then fed through one
of several affect identification models. We consider exist-
ing models AlexNet (Mollahosseini, Hasani, and Mahoor
2017), ResNet (He et al. 2016), and Vision Transformer
(ViT) (Dosovitskiy et al. 2020). We also consider two new
models: one based on involution as applied in RedNet (Li
et al. 2021a), and one using dynamic routing in vision trans-
formers (Dosovitskiy et al. 2020; Sabour, Frosst, and Hinton
2017). These models are discussed in more detail further be-
low. Every model outputs estimated valence and arousal val-
ues under the Russell circumplex model of affect (Russell
1980). Valence represents the level of negativity or positiv-
ity of an affect, while arousal represents the level of energy.
Both values range from −1 to 1. Thus, the circumplex model
is a valence-arousal coordinate system situating a range of
emotions in 2-D space.

Music Recommendation: The system uses a 600k-song
Spotify dataset (Chu and Roy 2017) as the music database
for the recommendation system. Interestingly, this music
database includes Spotify’s determination of valence and
arousal values for each song. There are larger Spotify
datasets available, yet this one contains songs spread out
widely on the valence-arousal dimensions. The system rec-
ommends the five songs in the dataset that are closest to the
user’s estimated valence and arousal, via nearest neighbor
with Euclidean distance. The system includes the opportu-
nity for user feedback, discussed further in Section 8.

4 Affect Identification
In this section we first describe the dataset used for training.
We then discuss involution and dynamic routing in vision
transformers, describing the architectures examined and sit-
uating them in the context of related work.

4.1 Data Description and Preprocessing
In affect identification, three major datasets exist: Affect-
Net (Mollahosseini, Hasani, and Mahoor 2017), Affect-in-
the-wild (Zafeiriou et al. 2017), and FER2013 (Goodfellow
et al. 2013). Among these, only AffectNet provides targets
for both classification (8 affect classes) and regression (va-
lence and arousal). Since we ultimately make use of both
kinds of targets, we focus our work on AffectNet. Specifi-
cally, we use the publicly-released subset of AffectNet con-
taining 287,651 training and 4,000 validation images. Since
the AffectNet testing set has not been publicly released, we
use their validation set as our testing set. Each RGB image
is 224× 224 pixels. Affect class frequency is unbalanced in
AffectNet, ranging from 134,415 images of “happy”, down
to 3,750 images of “contempt”.

4.2 Architecture 1: InvNet50
The affect identification models we’ve developed in this
work are based on one of two approaches. In this section,
we discuss the first approach, involution, which is a mod-
ification of convolution. Standard convolution layers allow
a model to be spatial-agnostic (distinguishing features ir-
respective of location) and channel-specific (collecting fea-
tures across various channels) (Li et al. 2021a). While these
properties can allow translational equivariance (LeCun et al.
1998), the grouping of neighboring pixels reduces the abil-
ity to learn longer-distance spatial relationships. In addition,
the number of channels grows in later layers of a deep CNN
model. While this allows the model to capture some impor-
tant features shared across channels, it also produces signif-
icant redundancy that increases computational cost (Jader-
berg, Vedaldi, and Zisserman 2014).

Li et al. (2021a) propose involution to address these chal-
lenges through spatial-specific (aware of spatial relation-
ships) and channel-agnostic (ignorant of channel-specific
features) properties. In contrast to standard convolution,
the involution kernel is not applied across local pixels.
Rather, the kernel to be applied in a given location is de-
termined dynamically based on the pixels at that location
and other learned parameters. The learned parameters come
from the image as a whole, in a mechanism similar to at-
tention (Vaswani et al. 2017). This allows the model to more
easily capture long-range spatial relationships of pixels. Fur-
thermore, by sharing involution kernels along the channel
dimension (channel-agnosticism), training of involution sys-
tems is more efficient without a significant loss in perfor-
mance compared to a channel-specific approach.

We name our involution-based model InvNet50, due to
some connections to ResNet50 (He et al. 2016) and Conv-
NeXt (Liu et al. 2022). Figure 1 and Table 1 outline the ar-
chitecture, containing three main components: a stem layer,
an inverted involution residual block, and a downsampling
block. First, the stem layer compresses the image to remove
irrelevant detail and reduce the computational requirements
of the model. Similar to ResNet, we deploy a stem layer
consisting of a 7 × 7 convolution, followed by a 2 × 2
max-pooling and a batch normalization layer. A stride of 2
is adopted in both the convolution and max-pooling layers
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Figure 1: An illustration of the involution and downsampling
blocks. In InvNet50, a sequence of four of these structures
are preceeded by the stem layer and succeeded by the aver-
age pooling layer as described in Table 1.

for consistency across the stem layer. Thus, the stem layer
quickly downsamples the input’s features by a factor of 4.

After the stem layer, we deploy a series of inverted bot-
tleneck residual involution blocks based on ConvNeXt (Liu
et al. 2022). Each block contains an involution layer, fol-
lowed by layer normalization (Ba, Kiros, and Hinton 2016).
For model configuration, we use an involution kernel of
7 × 7 and set the channels shared in a group to 16, thus
reducing the number of parameters and computational cost
without significantly harming the accuracy of the model (Li
et al. 2021a). After that, we use Gaussian Error Linear Units
(GELU) (Hendrycks and Gimpel 2016), dropout (p = 0.5),
and a linear layer. At the end of each block, we deploy a
batch normalization layer to reduce the internal covariate
shift (Ioffe and Szegedy 2015) and therefore improve the
convergence rate (Ioffe 2017). Lastly, to improve the gen-
eralization of the network we employ an element-wise ad-
dition (

⊕
) between an identity layer and the output of the

block (Simonyan and Zisserman 2015; He et al. 2016).
Between each of the four inverted involution residual

blocks, we employ a downsampling block. Its purpose is
similar to the stem layer, removing irrelevant details and
encapsulating important features by increasing the number
of output channels. In this case, we use a standard 2D con-
volution layer as our downsampling block. As done by Liu
et al. (2022), we use a kernel size of 3 and a stride of 2
to quickly downsample the learned features. As done by He
et al. (2016), we also adopt an adaptive average pooling layer
and fully-connected layers before producing the output.

4.3 Architecture 2: DRViT

The second type of model we’ve developed for this work
uses ideas from dynamic routing and vision transformers,
thus we name it DRViT. One concept at the heart of the
model is self-attention (Bahdanau, Cho, and Bengio 2015).
For a given input, query, key, and value vectors are ob-
tained via trained linear transformations. An add-multiply
operation combines the query with all inputs’ keys, the re-
sult is normalized, and softmax is applied to obtain the at-
tention weights. Another multiply-add operation combines
these with all value vectors to obtain the attention: a repre-
sentation of the importance of every value in the sequence
for the given query. More generally, attention is a represen-
tation of the importance of every item in the input to a par-

Layer Name Configuration
Stem layer (Conv) 7× 7, 64, stride 2

(Max Pooling) 2× 2, stride 2
Inv block no.1 (N = 3) (Inv) 7× 7, 64, stride 1
Downsample block no.1 (Conv) 3× 3, 128, stride 2
Inv block no.2 (N = 4) (Inv) 7× 7, 128, stride 1
Downsample block no.2 (Conv) 3× 3, 256, stride 2
Inv block no.3 (N = 6) (Inv) 7× 7, 256, stride 1
Downsample block no.3 (Conv) 3× 3, 512, stride 2
Inv block no.4 (N = 2) (Inv) 7× 7, 512, stride 1

Average pool, 2d fc or 1d fc

Table 1: A brief overview of InvNet50 architecture. The
number in the bracket after each Inv block represents the
number of times the input goes through the Inv block after
the stem or downsampling block. We omit the GELU and
linear layers for brevity.

ticular item. The above calculations are summarized:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

for matrices Q, K, and V of all query, key, and value vectors,
respectively, and dk the dimensionality of a key vector.

Transformers were first applied to natural language pro-
cessing tasks (Vaswani et al. 2017). The input text is treated
as a sequence of words, word embeddings are computed to
convert the text to numerical input, positional encoding is
applied to capture the sequential nature of the text, and fi-
nally self-attention is applied. More specifically, transform-
ers use multi-head attention, in which the query, key, and
value vectors are divided into n components called heads
via another linear transformation. n self-attention operations
are run in parallel, one on each head. Each head ends with
a feed-forward neural network, adding a non-linear trans-
formation and further parameterizing the head for training.
Finally, the output of each head is concatenated to obtain the
output of multi-head attention.

Dosovitskiy et al. (2020) introduced the first largely suc-
cessful application of transformers to image tasks with the
Vision Transformer (ViT). In this approach, images are split
into patches and flattened before proceeding with positional
encoding and the remaining transformer steps.

Sabour, Frosst, and Hinton (2017) note that the feed for-
ward neural network layers in each head cannot learn the
hierarchical structure of image features and are not rotation-
ally equivariant. Thus, they propose dynamic routing, which
we make use of in the dynamic routing vision transformer
(DRViT). Here, the feed forward neural network layer in
each head is replaced with a dynamic routing algorithm.

In dynamic routing, the idea of a classic neuron is ex-
tended to a capsule, which outputs an activity vector of val-
ues instead of a single value. The magnitude of the vec-
tor represents the estimated probability of some detected
feature, while the components represent properties of that
feature—potentially including spatial properties that can be
missed in convolutional models.
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Figure 2: An illustration of the Dynamic Routing for Vision
Transformers (DRViT) architecture.

To sketch the dynamic routing process, let ui be activity
vector i from the previous layer of capsules. Capsule j in the
next layer outputs vj where:

ûj|i =
∑
i

Wij × ui sj =
∑
i

cij ûj|i

vj =
||sj ||2

1 + ||sj ||2
sj

||sj ||

Note that vj is a squashed value such that vj → 0 for small
||sj || and vj → 1 for large ||sj ||. Wij represents trainable
weight matrices. Finally, cij is the coupling coefficient, rep-
resenting the importance of capsule i on capsule j. These
cij are obtained via an iterative process, in which cij values
based on ûj|i · vj are computed and used to calculate new
sj and vj , which then lead to new cij , typically through 3
iterations until a final vj value is output. See the work of
Sabour, Frosst, and Hinton (2017) for complete details. In
short, this approach allows for the recognition of spatial re-
lationships more effectively than convolutional models, due
to the activity vectors capturing not just feature presence but
also features’ spatial relationships.

Song et al. (2021) propose a dynamic grained encoder
for vision transformers and obtain good results in ImageNet
classification. With this inspiration, we also apply dynamic
routing to vision transformers, but place the routing layer
after the multi-head attention function instead of after the
patches of images as done by Song et al. A system diagram
is provided in Figure 2. We hypothesize that this alterna-
tive can further help the system learn features that focus on
the most important parts of the image. In our experiments
with DRViT, we consider only three encoder blocks (L). The
number of heads is 8, and the dimension of embedding lay-
ers is 256. In our experiments with DRViT, we use an em-
bedding dimension of 256, L = 3 encoder blocks, and 8
heads per block. Our last layer is a feed-forward perceptron.

5 Experimental Setup
In this section we describe the variables explored in our af-
fect identification model experiments: the model architec-
ture, whether or not data augmentation is applied, and what
output the model is tasked to provide.

We prepare these experiments with the intent of com-
paring them first to the AlexNet system of Mollahosseini,
Hasani, and Mahoor (2017). This architecture was orig-
inally applied to general image recognition (Krizhevsky,
Sutskever, and Hinton 2012) in the ImageNet dataset (Deng
2009). Mollahosseini, Hasani, and Mahoor use the same ar-

chitecture, but without transfer learning, trained on the Af-
fectNet dataset. The model contains five convolution layers,
each followed by max-pooling and batch normalization lay-
ers, and finally three fully-connected layers. Mollahosseini,
Hasani, and Mahoor actually create two separate copies of
AlexNet, with one trained for valence estimation, and one
for arousal. We use their reported results on AffectNet as a
baseline comparison for our own work.

For further comparison to existing work, we also consider
two well-known models: ViT and ResNet50. Vision Trans-
former (ViT) (Dosovitskiy et al. 2020) applies multi-head
attention to focus on important components of the image.
ResNet50 (He et al. 2016) is a convolutional neural network
containing 50 layers that uses residual techniques to avoid
overfitting and vanishing gradients. We choose ResNet50
over other variants of the Residual Network since it is the
most popular one, given its balance between number of pa-
rameters and accuracy. Both ViT and ResNet50 were origi-
nally trained on ImageNet, and we used transfer learning to
further train the parameters on the AffectNet dataset.

For InvNet50 and DRViT, our experiments consider three
different training sets: a non-augmented set, a set augmented
under plan A, and another augmented under plan B. We
explore these plans because some preliminary experiments
showed different models had different augmentation pref-
erences. The non-augmented set is the original AffectNet
dataset with unbalanced class counts. Augmentation plans A
and B have much in common. For affect classes with more
than 20,000 images, we randomly select 20,000 images. For
classes with fewer, we select all available images. For each
selected image, one of the following is applied with equal
probability: no augmentation; Gaussian blur (Gedraite and
Hadad 2011) to blur the image using Gaussian-generated
noise; horizon flip (Lei et al. 2019) to horizontally flip the
image; color jitter (Hou, Zheng, and Gould 2020) to ran-
domly adjust brightness, hue, saturation, and contrast; or
random erasing (Zhong et al. 2017) to erase a rectangular
region of the image. This augmentation is done “online”, in
which the augmentation occurs during training with poten-
tially different random choices for each original selected im-
age in each epoch. While this approach does lead to variabil-
ity in the dataset across experiments (even within the same
augmentation plan), it has been found to bring useful diver-
sity to the training set (Cubuk et al. 2019).

Augmentation plans A and B consider in different ways
the balance in class counts and the similarity to the non-
augmented dataset. Plan A has perfect balance of class
counts while more significantly adjusting the nature of the
dataset. Plan B makes smaller adjustments to reduce the
class count skew but does not achieve balance. More pre-
cisely, in plan A we consider each affect class 20,000 times.
For a given affect class, an image is randomly selected: 1 of
20,000 for larger classes, or 1 of fewer images for smaller
classes. Augmentation is applied to each selected image as
described above. Thus, the resulting number of images for
plan A is 160,000 (20,000 × 8 classes), and the class counts
are balanced. In contrast, plan B considers each image once,
but, as described above, caps larger classes at 20,000 im-
ages. Augmentation is applied to each selected image as de-
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scribed above. Thus, by plan B, some affect classes still have
fewer observations than others, but the skew is reduced. Un-
der plan B, the total number of observations is 108,021 im-
ages. Again, both plans use online augmentation, and so any
random selections are made anew each epoch.

We name the final variable of our experiments models ×
outputs, with possible values of 2× 1 and 1× 2. With 2× 1,
we refer to two copies (submodels) of the same architecture,
each with one output: one submodel trained to predict va-
lence, and one arousal. Recall that this is the approach used
by Mollahosseini, Hasani, and Mahoor (2017) in AlexNet.
The alternative, 1 × 2, refers to one model trained to pro-
duce two outputs: one for valence and one for arousal. This
is the approach of Toisoul et al. (2021).

In training, both DRViT and InvNet50 use L2 loss and
a batch size of 64. We use Adam optimization with a
decoupled weight decay of 0.05 and a learning rate of
0.001 (Loshchilov and Hutter 2017). To avoid overfitting,
we apply various approaches including early stopping and
learning rate reduction schedulers based on the validation
error and the number of epochs (Gençay and Qi 2001; Mol-
lahosseini, Hasani, and Mahoor 2017; Toisoul et al. 2021).
Experiments with SGD instead of Adam optimization led to
slightly worse results, thus we do not consider it further.

As in prior affect identification work (Mollahosseini,
Hasani, and Mahoor 2017; Hasani, Negi, and Mahoor 2019;
Weiler, Hamprecht, and Storath 2018), we use 4 different
performance metrics for valence and arousal. Consider first
the Root Mean Square Error (RMSE) measure, which com-
putes the average distance between each predicted value ŷi
and ground truth value yi. RMSE can be strongly affected by
outliers (Bermejo and Cabestany 2001), and so Mollahos-
seini, Hasani, and Mahoor (2017) propose the additional use
of the Pearson Correlation Coefficient (CORR) and Concor-
dance Correlation Coefficient (CCC). Briefly, CORR mea-
sures the linearity of the y versus ŷ relationship, while CCC
measures the numerical agreement between the values.

Finally, Mollahosseini, Hasani, and Mahoor (2017) argue
that in valence and arousal an agreement in sign (positive
or negative) between yi and ŷi can be more important than
some differences in magnitude. Thus, we also use the sign
agreement (SAGR) metric, which outputs 1 or 0 for sign
agreement or disagreement, respectively.

6 Experimental Results and Analysis
Transfer Learning: Considering the results in Table 2, we
first compare the AlexNet baseline (row 1) to the transfer
learning models: ResNet50 (rows 2 and 3) and ViT (rows 4
and 5). In prediction of valence, AlexNet has better results
in all four metrics than ResNet50 and ViT. For arousal,
AlexNet has slightly worse performance than ResNet50 and
ViT. These patterns hold whether we use no augmentation or
augmentation A. Additional experiments might bring more
insights on ResNet50 and ViT, but given their failure to sig-
nificantly improve upon AlexNet in these first experiments,
we instead move on to other experiments.

Model × Outputs: We next compare the 1×2 and 2×1
designs for InvNet50. Our intuitions on this matter go in
both directions. On the one hand, the 2×1 approach allows

each submodel to focus on only a single output, thus the
parameters can be attuned to just that output. On the other
hand, while valence and arousal are distinct values, it also
seems intuitive that there are correlations between them.
With the 1×2 approach of training a single model to output
both values, the model might leverage these relationships.
Given this apparent close trade-off, we run experiments on
both approaches.

For InvNet50 with no augmentation (rows 6 and 8), we
find similar results between 1×2 and 2×1, perhaps with
a slight preference for 1×2. For augmentation B (rows 7
and 10), this pattern continues. We conclude that 1×2 is
only slightly preferable. Apparently, our hypothesis about
the close trade-off between the two approaches was accu-
rate. 1×2 becomes much more attractive, however, when we
also consider that 2×1 (two models) requires nearly twice
as much training time and has nearly double the parameters.
We therefore focus on 1×2 in subsequent experiments.

Augmentation: Next, we consider augmentation plans,
focusing first on 1×2 for InvNet50 (rows 8, 9, and 10). Plan
A gives better results than no augmentation in this experi-
ment. Plan B results, however, are superior to A and signif-
icantly superior to no augmentation. In fact, this pattern is
found in the 2×1 design as well (rows 6 and 7). It seems
safe to conclude, then, that plan B is the best augmenta-
tion choice for InvNet50. This is an interesting result, since
augmentation B results in a mere 108k images, compared
to 160k for plan A and 288k for the original AffectNet. It
seems likely that InvNet50 is not harmed by this smaller
dataset due to its significantly smaller number of parameters
compared to AlexNet (10.5M versus 58.2M per model); In-
vNet50 with augmentation B (rows 7 and 10) beats AlexNet
in nearly every measure. An interesting question for future
work is to examine the effect of augmentation plans like A
and B, but modified to have more images.

Similarly, we consider augmentation plans for 1×2
DRViT models (rows 11, 12, and 13). We see that plan A
achieves just slightly worse performance overall compared
to no augmentation, while plan B is clearly worse. Given
InvNet50’s preference for plan B, it is surprising that B is
the worst of all for DRViT, and that no augmentation is pre-
ferred. Again, this might be explained by the difference in
dataset sizes among the three plans. Perhaps some aspects of
DRViT’s architecture is more data-hungry than InvNet50’s
approach; we consider this further below. Regardless, the
fact that DRViT performs best with no augmentation in our
tests means the model can avoid that extra training cost.

Architectures: Thus, our best result is DRViT 1×2 with
no augmentation (row 11). Our best InvNet50 result is 1×2
with augmentation B (row 10). Both of these systems show
stronger results than the AlexNet baseline, particularly in
arousal. This is an interesting outcome given the signifi-
cantly lower parameter counts for both InvNet50 and DRViT
compared to AlexNet, ResNet50, and ViT. These results
match our intuition. First, both InvNet50 and DRViT use an
attention mechanism. In affect identification, facial images
contain some regions of particular importance (e.g., mouth,
eyes), and so it is reasonable to expect that attention helps a
model focus on the most important regions.
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Valence Arousal
Params RMSE CORR CCC SAGR RMSE CORR CCC SAGR

ID Arch M × O (M) Aug (<) (>) (>) (>) (<) (>) (>) (>)
1 AlexNet 2× 1 2× 58.2 No 0.37 0.66 0.60 0.74 0.41 0.54 0.34 0.65
2 ResNet50 2× 1 2× 25.0 No 0.41 0.58 0.53 0.68 0.43 0.46 0.47 0.65
3 ResNet50 2× 1 2× 25.0 A 0.39 0.59 0.53 0.67 0.40 0.48 0.41 0.66
4 ViT 2× 1 2× 85.0 No 0.40 0.58 0.55 0.66 0.42 0.50 0.46 0.62
5 ViT 2× 1 2× 85.0 A 0.39 0.57 0.56 0.65 0.39 0.52 0.41 0.68
6 InvNet50 2× 1 2× 10.5 No 0.43 0.57 0.53 0.72 0.36 0.50 0.43 0.75
7 InvNet50 2× 1 2× 10.5 B 0.37 0.63 0.61 0.76 0.34 0.53 0.49 0.78
8 InvNet50 1× 2 10.5 No 0.42 0.59 0.55 0.73 0.36 0.51 0.45 0.74
9 InvNet50 1× 2 10.5 A 0.36 0.62 0.57 0.77 0.33 0.51 0.42 0.79

10 InvNet50 1× 2 10.5 B 0.37 0.65 0.63 0.77 0.33 0.55 0.52 0.80
11 DRViT 1× 2 13.0 No 0.36 0.68 0.66 0.78 0.36 0.67 0.53 0.75
12 DRViT 1× 2 13.0 A 0.37 0.66 0.63 0.79 0.35 0.65 0.48 0.77
13 DRViT 1× 2 13.0 B 0.39 0.61 0.57 0.72 0.37 0.56 0.48 0.63

Table 2: Results for various model experiments. Each row includes the architecture (Arch), the model×outputs value (M×O),
the number of parameters in millions (Params (M); 2× when M×O = 2 × 1), and the type of augmentation used (Aug). Each
row is completed with values for the four metrics in both valence and arousal prediction. Each measure is labeled (<) or (>) to
indicate lower or higher numbers are better, respectively. For each architecture, the best value for each measure is in bold.

We hypothesize that InvNet50 suffers slightly compared
to DRViT because its involution kernel includes only some
characteristics of attention rather than the entire attention
mechanism as traditionally defined. In addition, for simplic-
ity in InvNet50, we only consider GELU activation and lin-
ear layers, similar to ViT. In contrast, DRViT uses dynamic
routing to capture hierarchical relationships of features ex-
tracted from multi-head attention. This may be the source
of the previously hypothesized higher data requirements of
DRViT compared to InvNet50, but the explanation for the
different behavior remains uncertain.

While our models do not outperform the state-of-the-
art on AffectNet, our improvement over AlexNet shows
promise for further development. The precise reasons for
DRViT’s stronger performance, and how both approaches
may be further improved, is a matter of future study.

7 Music Recommender
Each of the previously described affect identification models
output vi and ai, corresponding to valence and arousal for
the input image, respectively. Recall that each of these are in
the range [−1, 1]. These outputs serve as input into the music
recommender. The recommender uses a 600k-song Spotify
dataset (Chu and Roy 2017), with each song already labeled
with values in the range [0, 1] for valence (vsp) and “energy”
(esp). Energy is analogous to arousal, and so we obtain va-
lence vs and arousal as values in [−1, 1] for each song via
vs = 2 · vsp − 1 and as = 2 · esp − 1. Given these values,
we can compute the Euclidean distance d((vi, ai), (vs, as))
on the valence-arousal plane between an image i and a song
s. With this distance measure, we use 5-nearest neighbor to
obtain the five songs most similar to the identified affect.

Our complete system (affect identifier and music
recommender) is deployed as a web application (see
https://github.com/anhphuongdo34/eaai23-client-dup and
https://github.com/anhphuongdo34/eaai23-server-dup). The

front-end of the app was built using the React framework,
while the back-end was written using Python and the Flask
framework and hosted on Google Cloud Platform. The app
acquires access to the user’s front-facing camera or webcam
to capture a photo of their face. It then uses OpenCV to
extract the cropped facial image to feed through the model
for the prediction of valence and arousal.

The app displays the valence-arousal value of the image as
a point on a circumplex graph, and indicates 1 of 8 classifica-
tions corresponding to the (vi, ai) point, such as “happy” or
“sad”. To provide this classification, we use a decision tree
trained on the AffectNet dataset, using valence and arousal
as inputs and the classification as the target. We tuned the
hyperparameters of the tree using a grid search, ultimately
using a maximum depth of 15, a maximum of 15 samples
per node, and at least 5 samples needed to split a node. This
simple approach achieves 96% accuracy on the AffectNet
validation set (used as the testing set, just as for the affect
identifier models).

The app then displays the top five closest-matching songs,
determined as described above. The user may preview the
first 30 seconds of a song, or listen to it in its entirety on
Spotify through a provided link. Figure 3 shows an example
of the experience.

8 User Experience Surveys
To gain insight into the user experience and preferences, we
conducted user testing of the system. For these tests, the app
uses 1×2 plan B InvNet50, rather than the slightly superior
DRViT, since the DRViT models have memory requirements
beyond the modest resources of the app host. We invited
users of the system to fill out an IRB-approved survey, rat-
ing the following statements on a 5-point Likert scale from
1 (strongly disagree) to 5 (strongly agree).

1. I prefer listening to music that matches my mood closely.
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Figure 3: The system demo with the predicted valence-
arousal, emotion and the song recommendations.

2. I prefer listening to music that helps improve my mood
(i.e., calm me down when I am angry, cheer me when I
am sad, etc.)

3. Most of the time, my emotion falls into one and only one
of the listed categories without overlapping.

4. If possible, I wanted to adjust the emotion before getting
the song recommendations.

Responses to the first two statements give insight about
a core assumption: that users want to listen to music that
matches their mood (question (1)), as opposed to music aim-
ing to change their mood (question (2)). Responses to the
third statement can suggest a user preference for classifi-
cation versus a (vi, ai) point on a circumplex plane. We
anticipate that feelings are usually complex, and are better
represented within a continuous range instead of by a dis-
crete class. Responses to the final statement give insight into
users’ perceptions of affect identification accuracy.

Summary results of 39 responses to the user survey are
shown in Table 3. Results show that users slightly prefer lis-
tening to music that matches their mood, rather than music
aimed at changing their mood (mean 4.03 for question 1,
versus 3.66 for question 2). Responses to question 3 are near
the middle with a 3.13 average. That is, users have no strong
opinion about whether their emotions fall into exactly one
or multiple classes. Perhaps, then, the flexibility of both a
classification and (valence, arousal) measure is more useful.
Responses to question 4 again are near the middle with a
3.14 average. This suggests that users are ambivalent about
whether the system is accurately identifying their emotion.

Item Average Median Std. Dev.
1 4.03 4 1.05
2 3.66 4 1.15
3 3.13 3 1.19
4 3.14 3 1.29

Table 3: Results of the user experience survey.

Given the complexity of emotions, the range of possibilities
in the circumplex model, and the error in the tested models
(depsite success over the AlexNet baseline), such a result
is perhaps not surprising. It is noteworthy, at least, that the
rating is not even lower.

9 Conclusions and Future Work
In this paper, we first compare several deep learning mod-
els for affect identification. We find that DRViT is most ef-
fective, combining dynamic routing with vision transform-
ers. We also find that the involution-based InvNet50 model
is quite effective. Both models yield better results than
AlexNet in all metrics, with far fewer parameters. The out-
put of an affect identifier then serves as the input into a mu-
sic recommendation system. We deploy a web application in
which music is recommended based on the perceived affect
of the user. Thus, by understanding the user’s affect, our sys-
tem aims to provide emotion-aware music recommendation.

The work described in this paper can be extended in many
ways. To consider a few, first note that more combinations
of experimental variables may bring further insight on the
architectures, model × output designs, and augmentation
plans. More fine-grained experiments could be considered as
well: for example, more architecture variables or augmenta-
tion plans that lead to datasets of varying size—particularly
sizes closer to the original AffectNet dataset.

The system as designed aims to recommend songs that
match the predicted affect. One might consider an alterna-
tive, in which the system aims to gradually move the user
into a positive mood through a sequence of songs traversing
the circumplex plane in a positive direction.

Finally, the song valence and arousal values from the Spo-
tify database were taken as truth. In reality, though, these
values are subject to error. Consideration of valence and
arousal estimation for songs, as opposed to merely faces as
in this work, could bring further improvements to the user
experience. Other song attributes included with the Spotify
database (e.g., danceability, liveness, tempo) may also pro-
vide insight into this kind of song classification.
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