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Abstract

There are several advantages to introducing a functional language early in a student’s college
experience: it provides an excellent setting in which to explore recursively-defined functions and
data structures, it encourages more abstract thinking, and it exposes students to a language
paradigm that is likely quite different from their previous experience. Even in a core curriculum
based on a traditional imperative (and object-oriented) language, it is valuable to spend two
or three weeks investigating a functional language. However, we have found that most existing
functional languages and environments pose significant hurdles to the introductory student,
especially when the language is only being used for a short time. This paper discusses some of
our ideas to simplify the framework, and allow students to experiment easily with the important
concepts of functional programming in the setting of CS2.

1 Motivation

There have been many proposals over the years to incorporate functional languages into the intro-
ductory computer science curriculum, dating back at least to the mid-1980’s with Abelson and Suss-
man’s influential text, Structure and Interpretation of Computer Programs [1]. They advocated the
use of the Scheme dialect of Lisp because of its simple syntax and support for powerful abstraction
mechanisms. Some more recent course designs [2, 3, 10] have also used Scheme, while others have
used statically-typed languages such as Miranda, Haskell, or Standard ML [4, 6, 13, 15, 17, 18]. In
each case, the reasons given for choosing a functional language include the support for abstractions
(including recursion and higher-order functions), the simple semantics (with few or no side-effects),
and the exposure to a different language paradigm and problem-solving style.

At our institution, we have not been willing to shift over our entire first or second course to use
a functional language exclusively, but for a number of years we have included a short (two or three
week) unit on functional programming in our Computer Science 2 course. The unit occurs just after
the introduction of recursive function calls in the imperative language (currently Java) and before
a discussion of abstract data types, starting with lists. In the unit, we explore typical patterns of
structural and generative recursion on numbers and lists. Until recently, the language used was
Scheme. When this author started teaching the course, the decision was made to switch to Haskell,
in part because of the author’s strong previous experience with statically-typed languages and also
because a significant number of students were having difficulties with the Scheme material.

After one year’s experience using Haskell (specifically, the Hugs system [16]), a project was
begun in the summer of 2003 to develop a functional language (which we have named HasCl, for



“Haskell, C-like”) and programming environment (named FUNNIE, for “Functional Networked
Integrated Environment”) specifically tailored to our needs in CS2. This paper is a report of the
design decisions that went into the new system. The guiding principles behind the design were that
the language should be modeled on the most important features of Haskell, should provide minimal
hurdles to students “taking a break” from an imperative language such as Java (since we wanted
to spend as little time as possible talking about syntactic issues during the unit), should leverage
students’ intuitions about function evaluation from high-school algebra, and that the environment
should be attractive and easy-to-use.

2 Related Work

The Scheme community itself is well aware of some of the difficulties the language presents to
the beginning programmer, particularly with the use of Abelson and Sussman as an introductory
text; see for example [9, 22]. Indeed, Wadler’s critique identified many of the features we favor
from Haskell that are missing in Scheme: pattern-matching function definitions, a mathematics-like
notation, static typing, user-defined types, and lazy evaluation. Discussing his experience with
teaching the language, Wadler says, “I did not feel that the syntax or idiosyncracies of [Scheme]
would be a major barrier. Experience has convinced me otherwise. Although each difficulty by
itself is minor, the cumulative effect is significant.” [22, page 93]

The TeachScheme! project [10, 20] and the DrScheme environment [7, 11] were developed in
part as a response to these problems. By defining a series of “language levels”—subsets of the
full language—the DrScheme environment is able to guide the beginners through a much simpler
language initially, with correspondingly helpful error messages if the student tries to write something
that might be legal in full Scheme but which is inappropriate at the given level. In addition, the
project’s textbook [10] advocates a design discipline which performs a type-driven case analysis
of the data, analogous to that supported by the pattern-matching style of the statically-typed
languages. Another important part of the DrScheme system, which directly influenced our own
design, is the Stepper, which illustrates the execution of a program by presenting a sequence of
algebraic substitution steps.

There are several implementations of Haskell oriented toward educational use. The Hugs system
mentioned above [16] is a fairly small implementation of almost the full Haskell 98 language, with
an interactive execution console and support for displaying graphics (this is used heavily in the
multimedia programming approach of [15]). Unlike the DrScheme environment, which provides an
integrated editor, Hugs requires an external tool to edit program source code. A similar environment
is provided by the Helium system [14], which has a compiler for a subset of Haskell, designed to be
easier to learn. As with the DrScheme language levels, by restricting the language the compiler is
able to give more meaningful error messages to the learner. It should be noted that the Glasgow
Haskell Compiler [12], generally seen as the standard full implementation of the language, set the
model for the Hugs and Helium environments—it too uses an external text editor to develop source,
and provides an interactive execution prompt. GHC also supports the same graphics facilities as
Hugs.

The Vital project [21] is a more radical implementation of a subset of Haskell. It presents a
spreadsheet-like document view of a program, where source code and expressions are intermixed
with results. Results can be graphical as well as textual; for example, a list might be displayed as a
series of linked boxes. The details of the display can be modified by applying different style-sheets.
As with a typical spreadsheet program, individual cells are edited in a text box. Changing the



definition of a cell causes re-evaluation of dependent expressions in the document. Only those parts
of the document which are currently in view need to be evaluated, so it is easy to evaluate an
infinite list and then scroll the screen sideways to see more and more of the list appear.

3 Syntactic Issues

In selecting an appropriate subset of Haskell for our system, we were motivated to minimize the
differences from the language of the rest of the course, Javal. We knew that we were going to be
generating our own course materials for the Haskell unit, so it was not even necessary to restrict
ourselves to a strict subset of Haskell, although for consistency—for example, when the full Haskell
language is taught in the upper-level Programming Languages course—we tried to stay as close as
possible.

One example which seems trivial, but which frequently trips up the newcomer to Haskell, is the
fact that parentheses are not required around function arguments. However, parentheses are needed
when the argument is itself a function application or an expression involving an operator (since all
of the operators have a lower precedence level than function application). That is, in full Haskell
you may write factorial 10, but you must insert the parentheses if you want factorial (n-1)
or factorial (twice n). This is especially likely to catch the beginner when defining functions
by pattern matching—if you try to define the length function on lists as follows:

length [ ] =0
length x : xs = 1 + length xs

you will get an error because it parses the left-hand-side of the second rule as (length x) : xs,
which is not legal. We avoid this whole problem by requiring Java-like parentheses around all
arguments, so the above function has to be defined as

length([ 1) =0
length([x : xs]) = 1 + length(xs)

The extra brackets around the argument of the second rule are explained in the next section. Since
parentheses are frequently needed, and since students will expect them from other languages and
also from common mathematical notation, this requirement is a small price.

Going along with this decision is a preference for having multi-argument functions take a tuple
of arguments, rather than the more idiomatic “curried” form, where the result of applying the
function to the first argument is another function which is applied to the next argument. For
example, we define the standard function map, which takes a function and a list and returns a new
list with the function applied to each item in the list, as follows:

map(f, [ 1) =[]
map(f, [x : xs]) = [£(x) : map(f, xs)]

The type inferred for our version of map is ((a) -> b, [a]) -> [b]. In standard Haskell, the type
ofmapis (a -> b) -> [a] -> [b], and an example of applying it ismap factorial [1 .. 100]—
that is, the result of map factorial is applied to the argument [1 .. 100]. We agree with
Chakravarty and Keller [4] that, for introductory programming, advanced FP techniques such as

n fact, at the time of the initial design, our CS2 course was taught in C++, but we knew that it was going to
change the next year, and the two languages are syntactically very similar anyway.



currying and higher-order functions (beyond map itself) are to be avoided, so there is no loss in
requiring that a function be provided with all of its arguments at once in a tuple.

One more syntactic issue which we will just mention briefly is that we chose Haskell’s explicit
layout, with braces and semicolons, rather than the elegant but problematic indentation-based
implicit layout. Again, this matches the syntax students will expect coming from Java.

4 Semantic Issues

We have already discussed our desire to take advantage of our students’ intuition about eval-
uating a functional program by repeated algebraic substitution. Haskell’s purity (lack of side-
effects) and lazy semantics are exactly what we need to enable this substitution—anytime there
is a subexpression matching the left-hand-side of one of the equations in the program, it can be
replaced by the appropriate instance of the right-hand-side. We took advantage of this to imple-
ment an algebraic stepper, similar to the one in DrScheme, so that the user can trace through the
steps of program execution. Here is a screenshot of the stepper window evaluating the expression
map(factorial, [1 .. 100]):

B ™ @ Stepper: map(factorial, [1 .. 100]) Step 10 of 10+
[1,2 * factorial(1) : map(factorial, [3 .. 100])]

[1,2 * (1 * factorial(1 - 1)) : map(factorial, [3 .. 100])]

& |4a|| >

The highlight shows the expression factorial(1) being replaced by 1 * factorial(l - 1), in
accordance with the rule factorial(n) = n * factorial(n - 1).

To enable this behavior, we had to make one surprising change to the syntax of the language.
In full Haskell, the operation of prepending an element x to a list xs is written x : xs. However,
if we had stuck with that decision, then the stepper would have had to display the intermediate
result above as

1 : (2 * factorial(1)) : map(factorial, [3 .. 100])

Only on the last step would the list 1 : 2 : 6 : ... have been rendered as [1, 2, 6, ...].
This is because the Haskell list syntax only allows the brackets around a fully-evaluated list. We
took a cue from a relative of Haskell, the Clean language [5], which uses the extra brackets around
the list formation operator, [x : xs]. We find that this minor change simplifies the student’s
mental model of list operations considerably, especially in the context of the stepper.

One other semantic issue that we have simplified from full Haskell is the matter of numeric
types. Haskell has a rich system (influenced by Scheme) of classes of numbers, including several
sizes of integers, floats, and rationals. As a statically-typed language, this necessitates a certain
amount of casting back and forth when types are mixed, which can easily frustrate a beginning
programmer. We chose to imitate Scheme more directly, and have a single type Num of numbers.
Internally, the implementation keeps track of whether the number is an int, a bigint, a double,



or a rational (pair of bigints), and does its best to choose an appropriate representation for the
result of each calculation. Therefore, there is no problem in the above example when it evaluates
factorial(100) and gets a bigint result with 157 digits. This has also served to motivate a bigint
programming project when we move back to dealing with linked lists in the imperative language.

5 Environment Support

Here is a screenshot of the current prototype of FUNNIE in action:
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Visible in this shot are:
e a definition window, containing an editor in which a function may be entered;
e an evaluation window, in which expressions may be entered and their results displayed;

e a stepper window, as discussed above—the arrow controls are single-step forward and back-
ward, and step directly to the beginning or end of the evaluation;

e a graphics window, discussed below; and
e two function browsers, one for the user’s definitions and one for the standard library modules.

In the function browser, we keep a history of definitions for each function, organized by timestamp.
A user may bring up a definition window on any of the versions, and may choose which one is the
“active” definition, to be used in evaluation. Not shown is the importance of the Class module in
the user’s function browser. We have a rudimentary facility for networking an entire class, so that
function definitions may be exchanged between students and a moderator. When the moderator
sends a definition out to the entire class, it shows up in the Class module instead of Main to avoid
a collision, in case the user already has a function of that name defined.

The graphics window appears when an expression is evaluated of type Graphic. At the moment,
we support creating simple graphics made up of overlapped rectangles and ellipses, inspired by some
of the examples in [15].



6 Future Work

The prototype version of FUNNIE seen above has now been used in our CS2 classes for three
years. A newer version is in development with a much-improved evaluator (the prototype is not
very efficient, and will easily run out of Java stack space in certain situations) and the concept of
a “module window.” The idea of a module window is that an entire module of function definitions
can be edited in a single window, which will also have tabs corresponding to the evaluation, stepper,
and graphics windows. This solves the problem of knowing which module to use when evaluating
expressions, since each module provides its own evaluation context.

The windows displaying textual results will have one further enhancement in the new version,
inspired in part by the infinitely scrollable document in Vital [21]. When a result is too large to
display on a single line, it will be lazily pretty-printed in the available space. Any parts of the
result which do not fit in the window will therefore not need to be evaluated, unless the window is
resized. The algorithm for this comes from [19].

In addition to displaying Graphic values as graphics, we are currently exploring libraries and
“visualizers” for music and animation, along the lines of [15] or [21]. Finally, a long-standing goal
has been to embed the system in a more powerful and robust development environment such as
Eclipse [8], to take advantage of its editing and project management tools. For example, Eclipse
provides easy synchronization of a project with a CVS server.

Finally, we are preparing additional teaching materials around our system, and will soon start
promoting its use at other institutions. The project has been released as open-source software, at
http://funnie.sourceforge.net/, and is already being used by at least one other school. After
the new version is complete, we will also conduct more formal evaluations of its effectiveness in
introducing students to functional programming.
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