
Leveraging Synergy Between
Database and Programming
Language Courses

Brian Howard
DePauw University

This work was supported by the 2008–11 Donald E. Town Faculty
Fellowship from DePauw University.

Motivation and Overview
Enhance DB or PL course by building on connections with the
other
Examples:

Syntax-Directed SQL Translation
Comprehension Syntax
Object-Relational Mapping
Transactional Memory
Document-Oriented Databases
MapReduce

Syntax-Directed SQL
Translation

Grammar for a subset of SQL

Translation Functions

Example Translation

What is the difference between a HAVING and a WHERE condition
when there is no GROUP BY?

Comprehension Syntax
Generalized for loop, based on set builder notation

Scala Example

val mentorPairs = for {
 mentor <- students
 other <- students
 if mentor.year < other.year &&
 mentor.major == other.major
} yield (mentor, other)

This is equivalent to

val mentors = students.flatMap(mentor =>
 students.withFilter(other =>
 mentor.year < other.year &&
 mentor.major == other.major
).map(other =>
 (mentor, other)
)
)

C# LINQ Equivalent

var mentors =
 from mentor in students
 from other in students
 where mentor.year < other.year
 && mentor.major == other.major
 select new {a = mentor, b = other};

SQL Equivalent

SELECT mentor.ID as a, other.ID as b
FROM Student mentor, Student other
WHERE mentor.Year < other.Year
 AND mentor.Major = other.Major;

Object-Relational Mapping

Java Database Connectivity (JDBC)

List mentors = new ArrayList();
Statement statement =
connection.createStatement();
String query =
 "SELECT mentor.ID as a, other.ID as b " +
 "FROM Student mentor, Student other " +
 "WHERE mentor.Year < other.Year " +
 " AND mentor.Major = other.Major;";

ResultSet results =
statement.executeQuery(query);
while (results.next()) {
 String mentorID = results.getString("a");
 String otherID = results.getString("b");
 mentors.add(new MIDPair(mentorID,
otherID));
}
results.close();

Java Persistence API (JPA)

@Entity
@Table(name="Student")
public class Student {
 @Id @Column(name="ID")
 private String id; // Primary key

 @Column(name="Year")
 private int year;

 @ManyToOne @JoinColumn(name="Major")
 private Department major; // Foreign key

 // usual constructors, accessors, etc. go
here
}

Java Persistence Query Language (JPQL)

List mentors = new ArrayList();
String queryString =
 "select mentor, other " +
 "from Student mentor, Student other " +
 "where mentor.year < other.year " +
 " and mentor.major = other.major";

Query query =
entityMgr.createQuery(queryString);
for (Object result : query.getResultList()) {
 Object[] pair = (Object[]) result;
 Student mentor = (Student) pair[0];
 Student other = (Student) pair[1];
 mentors.add(new MPair(mentor, other));
}

C# LINQ to Entities

var context = ...;
var query =
 from mentor in context.students
 from other in context.students
 where mentor.year < other.year
 && mentor.major == other.major
 select new {a = mentor, b = other};
var mentors = query.ToList();

Transactional Memory

class Fork { val inUse = Ref(false) }

def meal(left: Fork, right: Fork) {
 // thinking

 atomic { implicit txn =>
 if (left.inUse() || right.inUse())
 retry // forks are not both ready, wait
 left.inUse() = true
 right.inUse() = true
 }

 // eating

 atomic { implicit txn =>
 left.inUse() = false
 right.inUse() = false
 }
}

Example from ScalaSTM library documentation

Document-Oriented Databases
JavaScript Object Notation (JSON)

{
 "ID": "12-34567",
 "Name": "Ann O'Nemus",
 "Year": 2015,
 "Major": "Computer Science",
 "Home Address": {
 "Street": "123 Main",
 "City": "Springfield",
 "State": "AK",
 "ZIP": 98765
 },
 "Phones": [
 {"Type": "Home", "Number":
"555-555-1234"},
 {"Type": "Cell", "Number":
"555-555-5678"}
]
}

MapReduce
Example in MongoDB: count number of students per major/year

var map = function() {
 emit({"Major": this.Major,
 "Year": this.Year}, 1)
}

var reduce = function(key, values) {
 var total = 0;
 for (index in values) total +=
values[index];
 return total;
}

db.runCommand({
 "mapreduce": "students", // source
collection
 "map": map,
 "reduce": reduce,
 "out": "graduates" // output collection
})

