Leveraging Synergy Between
Database and Programming
Language Courses

Brian Howard
DePauw University

This work was supported by the 2008—11 Donald E. Town Faculty
Fellowship from DePauw University.

Motivation and Overview

e Enhance DB or PL course by building on connections with the
other
o Examples:
o Syntax-Directed SQL Translation
o Comprehension Syntax
o Object-Relational Mapping
o Transactional Memory
o Document-Oriented Databases
o MapReduce

Syntax-Directed SQL
Translation

Grammar for a subset of SQL

Expr

FWGH
FWG
FW

F

SELECT * FWGH
SELECT (ColName | Agg)™ FWGH

FWG (HAVING Cond)’

FW (GROUP BY ColName™)’
F (WHERE Cond)’

FROM TableName,+

Translation Functions

E[SELECT * FWGH]

E[SELECT (ColName | Agg)T FWGH]
H[FWG,aggs]

H[FWG HAVING Cond, aggs]
GIFwW, 0]

GIFW,aggs]

G[FW GROUP BY C’olName:F, aggs]
WIF]

W]F WHERE Cond]

F[FROM TableName]

F[FROM TableName™ , TableName]

H[FWGH, (]
project(H[FWGH,{Agg*}],{(ColName | Agg)})
GIFWG,aggs]

select(G[FWG, aggs], Cond)

WI[FW]

groupby (W[FW], 0, aggs)

groupby (W[FW], { ColName™}, aggs)
FIF]

select(F[F], Cond)

TableName

product(F[FROM TableName], TableName)

Example Translation

What is the difference between a HAVING and a WHERE condition
when there is no GROUP BY?

E[SELECT Min(Year) as Y FROM Student HAVING Cond]

project(H[FROM Student HAVING Cond, {Min(Year) as Y}],{Y})
project(select(G[FROM Student,{Min(Year) as Y}], Cond),{Y})
project(select(groupby(W[FROM Student],), {Min(Year) as Y}), Cond),{Y})
project(select(groupby(F[FROM Student], (), {Min(Year) as Y}), Cond),{Y})
project(select(groupby(Student, §, {Min(Year) as Y}), Cond), {Y})

1 I | |

Versus

™M

[SELECT Min(Year) as Y FROM Student WHERE Cond]
project(H[FROM Student WHERE Cond, {Min(Year) as Y}],{Y})
project(G[FROM Student WHERE Cond, {Min(Year) as Y}],{Y})
project(groupby(W[FROM Student WHERE Cond], (), {Min(Year) as Y}),{Y})
project(groupby(select(F[FROM Student], Cond),(, {Min(Year) as Y}),{Y})
project(groupby(select(Student, Cond),), {Min(Year) as Y}),{Y})

A~ N A~ A~

Comprehension Syntax

Generalized for loop, based on set builder notation

Scala Example

val mentorPairs = for {
mentor <- students
other <- students
if mentor.year < other.year &&

mentor.major == other.major
} yield (mentor, other)

This 1s equivalent to

val mentors = students.flatMap(mentor =>
students.withFilter (other =>

mentor.year < other.year &&

mentor.major == other.major
) .map(other =>

(mentor, other)
)

)

C# LINQ Equivalent

var mentors =
from mentor in students
from other in students
where mentor.year < other.year
&& mentor.major == other.major
select new {a = mentor, b = other};

SQL Equivalent

SELECT mentor.ID as a, other.ID as b
FROM Student mentor, Student other
WHERE mentor.Year < other.Year

AND mentor.Major = other.Major;

Object-Relational Mapping

Java Database Connectivity (JDBC)

List mentors = new ArrayList();
Statement statement =
connection.createStatement();
String query =
"SELECT mentor.ID as a, other.ID as b " +
"FROM Student mentor, Student other " +
"WHERE mentor.Year < other.Year " +
" AND mentor.Major = other.Major;";

ResultSet results =
statement.executeQuery(query);
while (results.next()) {
String mentorID = results.getString("a");
String otherID = results.getString("b");
mentors.add(new MIDPair (mentorID,
otherID));
}

results.close();

Java Persistence API (JPA)

QEntity
@Table(name="Student")
public class Student {
@Id @Column(name="ID")
private String id; // Primary key

@Column(name="Year")
private int year;

@ManyToOne @JoinColumn(name="Major")
private Department major; // Foreign key

// usual constructors, accessors, etc. go
here

}

Java Persistence Query Language (JPQL)

List mentors = new ArrayList();
String queryString =
"select mentor, other " +
"from Student mentor, Student other " +
"where mentor.year < other.year " +
" and mentor.major = other.major";

Query query =
entityMgr.createQuery(queryString);

for (Object result : query.getResultList()) {
Object[] pair = (Object[]) result;
Student mentor = (Student) pair[0];
Student other = (Student) pair[1l];

mentors.add(new MPair (mentor, other));

C# LINQ to Entities

var context = ...;
var query =
from mentor in context.students
from other in context.students
where mentor.year < other.year
&& mentor.major == other.major
select new {a = mentor, b = other};
var mentors = query.ToList();

Transactional Memory

class Fork { val inUse = Ref(false) }

def meal(left: Fork, right: Fork) {
// thinking

atomic { implicit txn =>

if (left.inUse() || right.inUse())
retry // forks are not both ready, wait
left.inUse() = true
right.inUse() = true
}
// eating

atomic { implicit txn =>
left.inUse() = false
right.inUse() = false

}

}

Example from ScalaSTM library documentation

Document-Oriented Databases

JavaScript Object Notation (JSON)

"ID": "12-34567",
"Name": "Ann O'Nemus",
"Year": 2015,
"Major": "Computer Science",
"Home Address": {
"Street": "123 Main",
"City": "Springfield",
"State": "AK",
"ZIP": 98765
o
"Phones": [
{"Type": "Home", "Number":
"555-555-1234"},
{"Type": "Cell", "Number":
"555-555-5678"}
]

}

MapReduce

Example in MongoDB: count number of students per major/year

var map = function() {
emit({"Major": this.Major,
"Year": this.Year}, 1)

}

var reduce = function(key, values) {
var total = 0;
for (index in values) total +=
values[index];
return total;

}

db.runCommand ({

"mapreduce": "students", // source
collection

"map": map,

"reduce": reduce,

"out": "graduates" // output collection

})

