
Leveraging Synergy Between Database and
Programming Language Courses

Brian T. Howard
Department of Computer Science

DePauw University
Greencastle, Indiana 46135
bhoward@depauw.edu

ABSTRACT
Undergraduate courses in database systems and program-
ming languages are frequently taught without much over-
lap. This paper argues that there is a substantial benefit
to emphasizing some areas of commonality, both old and
new, between the two subjects. Examples of such cross-
fertilization that may be used to enhance one or both of
the courses include query language design and implementa-
tion, object-relational mapping, transactional memory, and
various aspects of the recent “NoSQL” movement.

Introduction
The impetus for this paper came when the faculty member
who had taught the database course for years in our small
department retired. No one else on the faculty had ever
taken a database course, much less taught one, so the author,
with a background in programming languages, volunteered
to take on the task of learning the material, on the basis of
a half-remembered connection between Prolog and database
queries. After one time through the course, with a small
class of mostly-forgiving students, the realization came that
there were a number of threads in common with program-
ming languages: the design and implementation of query
languages, for example, as well as the previously mentioned
connection with Prolog. A sabbatical leave and a university-
sponsored faculty fellowship gave the opportunity to explore
these similarities further, and particularly to catch up on re-
cent research and industry trends relating these two areas.
The rest of this paper consists of brief summaries of some
overlapping topics, with pointers to relevant literature and
suggestions for incorporating the material into one or both
of the courses. Regrettably, space constraints limit the de-
tail with which examples can be given here. The authorÕs
experience so far in exploiting these connected topics has
been that students appreciate seeing the interplay between
multiple courses, and classroom discussions can go deeper
when they realize they can relate the content of one course
to material they may have seen elsewhere.

© CCSC, (2015). This is the author’s version of the work. It is posted here
by permission of CCSC for your personal use. Not for redistribution. The
definitive version was published in The Journal of Computing Sciences in
Colleges, 31, 1, October 2015, http://dl.acm.org/.

SQL Grammar and Translation
A straightforward application of the crossover comes when
describing the language SQL [?]. While the full language is
huge (and most implementations notoriously deviate from
the standard in significant ways), it is feasible to work with
formal descriptions of useable subsets of the language. For
example, a context-free grammar with just a few rules can
be given for simple SELECT-FROM-WHERE-GROUP BY-HAVING

queries, and then a syntax-directed translation can be de-
veloped that compiles those queries into relational algebra.

In the context of a PL course, this small example serves as
an application of some of the formal tools to a perhaps more
practical situation than the typical “expression language.”
In the context of a DB course, introducing this bit of for-
malization provides a technique for students to check their
intuitions about how to interpret queries. Indeed, the act
of preparing such an example caused the author to discover
two tricky points of these queries that are easy to miss in
less formal presentations: how to handle a query with a HAV-

ING clause but no GROUP BY clause, and the implications of
SQL’s implementation-dependent column name assignment
for anonymous aggregations.

Comprehension Syntax
A fairly recent addition to the repertoire of common pro-
gramming language control structures is the “list compre-
hension,” sometimes known more generally as the sequence
or monad comprehension. Based on the set builder notation
from mathematics, it extends the typical lower-level “for”
loop by abstracting away details about how to select and
iterate over elements of a collection. For example, consider
the following code in Scala [?], which returns a collection of
potential mentorship pairs (students with the same major,
where the first is more senior):

val mentorPairs = for {

mentor <- students

other <- students

if mentor.year < other.year &&

mentor.major == other.major

} yield (mentor, other)

A comprehension is implemented by common collection op-
erations such as map and filter. An advantage of the com-
prehension approach is that it gracefully extends to richer
kinds of collections and enables appropriate optimizations.
For example, applying the above comprehension to a “par-
allel collection” of students will automatically run across all
of the available cores.



This story of the advantages of a higher-level, declarative
style of programming is of course also behind the success of
SQL and the relational database model. Indeed, the com-
prehension example above is quite similar to the following
SQL:

SELECT m.ID as mentor, o.ID as other

FROM Student m, Student o

WHERE m.year < o.year AND m.Major = o.Major;

A database system is free to optimize the order in which the
Student records are traversed while performing this query,
as well as take advantage of additional information such as
an index (for example, to limit the search for others to only
those students in the mentor’s major).

The SQL SELECT statement, along with the XQuery
FLWOR expression [?], was the explicit inspiration for the
comprehension syntax added to Microsoft’s C# 3.0 and Vi-
sual Basic 9 [?]. Known as LINQ, for Language Integrated
Query, it comprises an embedded domain-specific language
for writing comprehension-like queries against databases,
XML documents, and in-memory data structures. On the
surface, all three forms of query look the same; behind the
scenes, just as described above, the actions performed will
be optimized for the particular kind of collection.

Objects and Databases
Much has been written over the past quarter-century (for
example, [?, ?, ?, ?, ?, ?, ?, ?]) about problems involved in
integrating database systems and programming languages.
There has been a particular focus on working with object-
oriented languages, partly because there seems to be sig-
nificant common ground between data models and object
models: consider for instance the similarities between E-
R diagrams and UML class diagrams. However, early on
it was recognized that there is an “impedance mismatch”
[?] between general-purpose programming languages and
database systems. Various characterizations of this mis-
match have been given; Cook and Ibrahim [?] list the fol-
lowing issues:

• Clash between the common imperative programming
model and the declarative nature of database queries;

• Tension between program compilation and query opti-
mization;

• Emphasis on general data structures and algorithms
versus restriction to the relational model;

• Concurrency based on cooperating threads versus com-
peting transactions;

• Incompatible interpretations of null values; and

• Different approaches to modularity and information
hiding.

Many technologies have been proposed over the years to
deal with this mismatch. Three that are instructive to ex-
amine in an undergraduate DB course are Java Database
Connectivity (JDBC [?]), Java Persistence API (JPA [?]),
and the previously-mentioned Language Integrated Query
(LINQ [?]).

Java Database Connectivity
JDBC provides a fairly simple abstraction layer over a data-
base connection. Drivers are available for many systems to
handle the lower-level details of the connection, so programs
may work in a relatively database-independent manner.

Some difficulties with the JDBC approach include the use
of a Java String to represent the SQL query, which implies
that its syntax will only be examined at runtime. In cases
where queries are built dynamically, care has to be taken to
avoid SQL injection vulnerabilities. There is also duplication
of information at the boundary between Java and SQL, to
maintain a correspondence between variables on each side.
Finally, the relatively low level of JDBC, for example, re-
quiring an explicit loop through a result set to retrieve the
queried data, invites common programming errors such as
neglecting to free up resources, or writing inefficient code
that does processing on the client side which might have
been better performed on the server side.

Java Persistence API
The Java Persistence API attempts to deal with these issues
by putting another layer of abstraction on top of JDBC. It
automates some of the work of the object/relational map-
ping: by adding Java annotations to the class definitions
of entities, the programmer enables the JPA to generate an
entity manager, which is an object that mediates between
in-memory entities and their corresponding storage repre-
sentation in the database. It manages the underlying JDBC
connection and result set objects, and it shields the pro-
grammer from directly writing SQL. Instead, queries are ex-
pressed in JPQL, which resembles SQL but deals with entity
objects instead of the underlying relations. There are still
some problems with this approach: queries are embedded as
strings instead of richer objects amenable to compile-time
checking, and down-casts are required to attach the correct
types to the results of queries. More substantially, it is still
quite possible to write inefficient code by using the entities
in such a way that the entity manager is unable to submit
sufficiently optimizable queries to the database server. How-
ever, JPA represents a significant advance towards the goal
of incorporating object persistence into a general-purpose
programming language.

Language Integrated Query
Embedded domain-specific languages such as LINQ improve
on the situation with JPA by expressing queries directly as
source language constructs. This enables substantial compile-
time checking of query syntax and typing, and allows the
programmer to apply the full range of abstraction mech-
anisms (parameterization, modularization, and access con-
trol) to writing queries, while maintaining the ability of the
database server to perform appropriate optimizations.

Transactional Memory
With the increasing importance of concurrent programming
as the number of cores per processor increases, and the un-
fortunate difficulty of writing correct concurrent programs,
there have been a large number of proposals for abstrac-
tions with which to manage the complexity. One that has
gained popularity in recent years is transactional memory,
based on the long-standing use of transactions to manage
concurrency in database systems [?, ?, ?]. The concept is



simple: regions of code containing references to shared data
are marked “atomic,” with the guarantee that all changes
to the shared data made within such a block will happen
atomically (that is, as if all the changes were performed si-
multaneously) and in isolation (that is, without any other
process changing the shared data during execution of the
block).

A number of mechanisms have been devised to implement
this, both in hardware and software. A typical implemen-
tation of software transactional memory (STM) uses opti-
mistic execution, where atomic blocks are executed on the
assumption that no other block has read or written to the
shared memory in a way to violate the guarantees. If a
violation is detected (for example, by comparing the val-
ues at the end of the block with the initial values, just be-
fore atomically writing any changes), then the transaction
is “rolled-back”—any changes are undone, and the transac-
tion is retried. This involves some overhead, but the claim
is that most of the time the optimistic execution will suc-
ceed, and the small amount of extra work done behind the
scenes is worth the simplified programming model, since it
is much easier to reason about the correctness of the atomic
blocks than to show that equivalent code with explicit locks
is correct (safe and deadlock-free). The analogy is made
with automatic garbage collection [?]: a skilled programmer
can probably write more efficient correct code with explicit
memory management, but for most purposes it is more prac-
tical to accept a small performance hit in exchange for much
easier development.

NoSQL
The term“NoSQL”has become popular in the past few years
to refer to a broad collection of technologies that are alter-
native or complementary to SQL-based relational database
systems. Some of the characteristics of NoSQL approaches
include an emphasis on distributed storage and processing,
greater flexibility in the format of stored values, replacement
of the full relational model in favor of a simpler key/value
store model, and, frequently, a relaxation of the traditional
ACID properties: for example, by guaranteeing only “even-
tual” consistency. Examples include Google’s BigTable [?],
Amazon’s Dynamo [?], and Apache’s CouchDB [?]. This
paper will not attempt to debate the merits of the NoSQL
approach, but simply look at two typical aspects with con-
nections to programming languages.

Document-Oriented Databases
While some NoSQL approaches, such as BigTable, have a
traditional structure of rows and columns (albeit with greater
flexibility to add columns as needed), many systems store
values that are documents of “semi-structured data.” Typi-
cally these documents are arranged in a self-describing for-
mat such as XML or JSON (JavaScript Object Notation).
A document may consist of an arbitrary collection of fields,
each of which may in turn contain a complex sub-document
or list of documents. This ability to store various pieces
of related information in a single document alleviates much
of the mismatch between objects and relational tables (and
explains the reduced need for join operations).

MapReduce
The MapReduce framework [?] was developed by Google to
handle a common processing task: examine all of the doc-
uments spread across a very large distributed storage sys-
tem, and collect up some kind of summary information from
each. The framework handles the details of farming out the
job to a large number of processors, efficiently and robustly
dealing with the low-level communications and data han-
dling. All that a user of the framework needs to provide is
a pair of functions, inspired by common iteration patterns
in functional languages: a “map” function is applied to each
document, running in parallel as much as possible, returning
(“emitting”) zero or more key/value pairs; a “reduce” func-
tion is then applied to combine a group of key/value pairs
into a summary value or set of values. The reduce operation
is typically applied in a tree fashion: individual processing
nodes may apply it locally, and then send the results back to
parent nodes to be reduced further. We have already seen
the map operation in the context of comprehension-based
queries; it is also analogous to the FROM and WHERE clauses
of SQL, while the reduce operation corresponds more to the
GROUP BY and HAVING clauses. Indeed, the CouchDB system
uses MapReduce as the basis for defining query views.

Conclusions
We have presented a number of examples of intersections be-
tween topics suitable for undergraduate database and pro-
gramming language courses. They reflect a variety of ways
in which the viewpoint of one subject may be exploited to
gain additional insight into the other. The selection is not
meant to be comprehensive, but it is intended to cover a
range of both classical and current topics; by using this sort
of crossover material in a PL or DB course, the author be-
lieves that students will both gain a deeper understanding
of the topic at hand and also come to appreciate the inter-
connectedness of many areas of computer science, which are
too often seen as isolated and independent.

Acknowledgments
This work was supported by the 2008–11 Donald E. Town
Faculty Fellowship from DePauw University.

1. REFERENCES
[1] Atkinson, M. P., Buneman, O. P., Types and

persistence in database programming languages, ACM
Computing Surveys, 19(2), 105–190, 1987.

[2] Atkinson, M. P., Morrison, R., Orthogonally persistent
object systems, VLDB Journal, 4, 319–401, 1995.

[3] Bloom, T., Zdonik, S. B., Issues in the design of
object-oriented database programming languages,
OOPSLA ’87: Conference Proceedings on
Object-Oriented Programming Systems, Languages and
Applications, 441–451, 1987.

[4] Carey, M. J., DeWitt, D. J., Of objects and databases:
A decade of turmoil. VLDB’96, Proceedings of the
22nd International Conference on Very Large Data
Bases, 3–14, 1996.

[5] Chamberlin, D., XQuery: An XML query language,
IBM Systems Journal, 41(4), 597–615, 2002.

[6] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., Burrows, M., Chandra, T., Fikes, A.,



Gruber, R. E., Bigtable: a distributed storage system
for structured data, OSDI ’06: Proceedings of the 7th
Symposium on Operating Systems Design and
Implementation, 205–218, 2006.

[7] Cook, W. R., Ibrahim, A. H., Integrating
programming languages and databases: What is the
problem, ODBMS.ORG, Expert Article, 2005.

[8] CouchDB, couchdb.apache.org/, retrieved March 17,
2015.

[9] Dean, J., Ghemawat, S., MapReduce: Simplified data
processing on large clusters, OSDI’04: Proceedings of
the 6th Symposium on Operating Systems Design and
Implementation, 137–150, 2004.

[10] DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W.,
Dynamo: Amazon’s highly available key-value store,
SOSP ’07: Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles, 205–220,
2007.

[11] Drepper, U., Parallel programming with transactional
memory, Communications of the ACM, 52(2), 38–43,
2009.

[12] Grossman, D., The transactional memory/garbage
collection analogy, OOPSLA ’07: Proceedings of the
22nd annual ACM SIGPLAN conference on
Object-Oriented Programming Systems, Languages,
and Applications, 695–706, 2007.

[13] Herlihy, M., Moss, J. E. B., Transactional memory:
architectural support for lock-free data structures, In
Proceedings of the 20th Annual International
Symposium on Computer Architecture, 289–300, 1993.

[14] International Organization for Standardization,
Database Language SQL, ISO/IEC 9075, 1986,1989,
1992, 1999, 2003, 2008.

[15] Java database connectivity,
www.oracle.com/technetwork/java/javase/jdbc/,
retrieved March 17, 2015.

[16] Java persistence api,
jcp.org/aboutJava/communityprocess/final/jsr317/,
retrieved March 17, 2015.

[17] Language integrated query,
msdn.microsoft.com/en-us/library/bb397926.aspx,
retrieved March 17, 2015.

[18] Maier, D., Representing database programs as objects,
Advances in Database Programming Languages,
377–386, 1990.

[19] Meijer, E., Confessions of a used programming
language salesman (getting the masses hooked on
Haskell), OOPSLA ’07: Proceedings of the 22nd
Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, 677–694, 2007.

[20] Russell, C., Bridging the object-relational divide,
Queue, 6(3), 18–28, 2008.

[21] Scala. www.scala-lang.org/, retrieved March 17,
2015.

[22] Shavit, N., Touitou, D., Software transactional
memory, PODC ’95: Proceedings of the 12th Annual
ACM Symposium on Principles of Distributed
Computing, 204–213, 1995.

[23] Wadler, P., Databases and programming languages:
Together again for the first time, DBPL ’11:
Proceedings of the 13th International Symposium on
Database Programming Languages, 2011.


