
Labeling techniques and typed fixed-point operators

John C. Mitchell

Department of Computer Science

Stanford University

mitchell@cs.stanford.edu

My Hoang

SAP Technology, Inc.

950 Tower Lane, 16th Floor

Foster City, CA 94404

my.hoang@sap-ag.de

Brian T. Howard

Department of Mathematics & Computer Science

Bridgewater College

bhoward@bridgewater.edu

February 28, 1997

Abstract

Labeling techniques for untyped lambda calculus were developed by Lévy, Hyland, Wadsworth
and others in the 1970’s. A typical application is the proof of confluence from finiteness of de-
velopments: by labeling each subterm with a natural number indicating the maximum number
of times this term may participate in a reduction step, we obtain a strongly-normalizing ap-
proximation of β, η -reduction. Confluence then follows by a syntactic “compactness” argument
(repeated in the introduction of this paper).

This paper presents applications of labeling to typed lambda calculi with fixed-point opera-
tors, including confluence and completeness of leftmost reduction for PCF (an “applied” lambda
calculus with fixed-point operators and numeric and boolean operations) and a confluence proof
for a variant of typed lambda calculus with subtyping. Labeling is simpler for typed calculi
than untyped calculi because the fixed-point operator is the only source of nontermination. We
can also use the method of logical relations for the labeled typed calculus, extended with basic
operations like addition and conditional. This method would not apply to untyped lambda
calculus.

1 Introduction

This paper presents a proof method for extensions of typed lambda calculus with fixed-point oper-
ators that is based on labeled reduction. The main idea, in brief, is that we may prove properties
of a typed functional language by first labeling every occurrence of the fixed-point operator with
a non-negative integer giving the maximum number of times this operator may be used in com-
putation. This produces a language with “bounded recursion.” We may prove confluence (the
Church-Rosser property) and termination of reduction with bounded recursion, for example, using
the same techniques that would apply for pure typed lambda calculus. While some properties, such
as termination, may fail when labels are removed, others, such as confluence, may be preserved.
Although this paper (prepared in connection with the first author’s invited talk at the Higher-Order
Operational Techniques workshop) is primarily concerned with operational techniques, there are
also applications of labeling in denotational semantics.

1

2

We develop two sets of results. The first are for typed lambda calculus extended with fixed-
point operators and any set of additional operations satisfying certain conditions. The second are
for typed lambda calculus with subtyping. In the first case, we prove confluence and termination
of labeled calculus, then use these to show confluence for the unlabeled calculus and completeness
of leftmost reduction. While many readers may have assumed that these properties of lambda
calculus also hold when types, recursion and operations such as integer arithmetic are added, we
were unable to find any prior proofs of these properties in the literature. For the second system,
we observe that confluence fails for β, η -reduction in the presence of subtyping. This problem is
repaired by adding an intuitive but unusual reduction rule. We then use the labeling technique to
extend our confluence proof to typed lambda calculus with subtyping and fixed-point operators.
This use of labeling is technically interesting since the confluence proof for typed lambda calculus
with subtyping relies on termination.

The inspiration for our use of labeling comes from the untyped lambda calculus, where labeling
techniques were developed by Lévy, Hyland, Wadsworth and others in the 1970’s [Bar84, Hyl76,
Lév75, Wad76]. A good illustrative example is the proof of confluence from finiteness of develop-
ments: by labeling each subterm with a natural number indicating the maximum number of times
this term may participate in a reduction step, we obtain a strongly-normalizing approximation of
β, η -reduction. Confluence then follows by a syntactic “compactness” argument. While the tech-
niques for proving properties of labeled systems differ between typed and untyped systems, the
transfer from labeled to unlabeled versions are similar. Since this argument provides the basis for
the unifying technique of this paper, we illustrate it briefly using untyped lambda calculus. Since
this description is meant only to provide intuition, we will not be concerned with the details. The
main properties used here will be proved later for typed systems.

The main reduction (symbolic evaluation) rule of untyped lambda calculus is β -reduction,

(β) (λx. U)V → [V/x]U

where [V/x]U is the result of substituting expression V for all free occurrences of variable x in U .
(See [Bar84] for full presentation and discussion.) It is easy to find untyped lambda terms that may
be reduced indefinitely without reaching a normal form, a term that cannot be further reduced.
For example, we have

(λx. xx)(λx. xx)→ [(λx. xx)/x]xx ≡ (λx. xx)(λx. xx)

However, we can eliminate infinite sequences of reduction by labeling each term with a natural
number and limiting reduction to positive numbers as follows:

(βn+1) (λx. U)n+1V → ([V n/x]U)n

where V n is result of replacing each label ℓ in V by the minimum of ℓ and n . For example, we
have

(λx. xx)n+1(λx. xx)n+m → [(λx. xx)n/x]xx ≡ (λx. xx)n(λx. xx)n

For this example, it is easy to see that since the labels decrease, repeated labeled reduction must
eventually halt. In fact, labeled reduction is confluent and terminating on untyped lambda terms
[Bar84].

The main properties connecting labeled and unlabeled reduction are given below, using U# for
an arbitrary labeling of U and ♮(L) for the result of erasing labels from L :

Projection: If U# →→ L , for unlabeled term U and labeled term L , then U →→ ♮(L).

3

U

W

U#

W #

V1 V2
#V1

#V2 V1 V2

a

b

c

Figure 1: Confluence proof using labeling.

Lifting: If U →→ Vi , for unlabeled terms U, V1, . . . , Vk , then there exist labelings
U#, V #

1 , . . . , V #
k of these terms such that U# →→ V #

i for 1 ≤ i ≤ k

We will use analogous properties of typed labeling in each of our labeling proofs. Intuitively, lifting
and projection are very natural properties if we think of labeling as restricting the use of some
computational resource and erasing the label as dropping this restriction. For example, we can
consider projection as a formal statement of the intuitive property that if a program computes
a result when we allocate at most n computation steps to the program, then the program will
compute the same result if we run it without any such limit.

Using lifting and projection, along with confluence of labeled reduction, we can prove confluence
of untyped lambda calculus as follows. Assume that untyped term U reduces to terms V1 and V2 .
We must show that there exists some term W with V1 →→ W and V2 →→ W . The argument has
three steps, also shown diagrammatically in Figure 1.

(a) Lift both reductions to obtain labeled reductions from some U# to some V #
1 and V #

2 .

(b) By confluence of labeled reduction, V #
1 and V #

2 must reduce to some common (labeled) term
W# .

(c) Project these labeled reductions to obtain unlabeled reductions as desired.

This proves confluence for untyped lambda calculus.
After defining the appropriate versions of typed lambda calculus in Section 2, we review a

general theorem based on the logical relation method in Section 3. Confluence and completeness
of leftmost reduction for typed lambda calculi with fixed-point operators are covered in Section 4,
with subtyping considered in Section 5.

4

2 Syntax, equations and reduction rules

2.1 Typed lambda terms

Typed lambda calculus may be defined with a wide variety of types, including function, product,
disjoint union, unit, and empty types. For simplicity, we will work only with function types in this
paper. The type expressions of typed lambda calculus with function types, λ→ , are given by the
grammar

σ ::= b | σ→ σ

where b may be any type constant. The extension of certain properties to product types appears in
[Mit96], along with some discussion of the failure of confluence with terminal (one-element) types.

The compound expressions and their types are defined using inference rules. The rules use
typing assertions of the form

Γ ⊲ M : τ,

where Γ is a type assignment of the form

Γ = {x1:σ1, . . . , xk:σk},

with no xi occurring twice. Intuitively, the assertion Γ ⊲ M : τ says that if variables x1, . . . , xk

have types σ1, . . . , σk (respectively), then M is a well-formed term of type τ . If Γ is any type
assignment, we will write Γ, x:σ for the type assignment

Γ, x:σ = Γ ∪ {x:σ}.

In doing so, we always assume that x does not appear in Γ.
The syntax of terms depends on the choice of type and term constants. A λ→ signature

Σ = 〈B,C〉 consists of

• A set B whose elements are called base types or type constants.

• A collection C of pairs of the form 〈c, σ〉 , where σ is a λ→ type expression over B and no
c occurs in two distinct pairs.

A symbol c occurring in some pair 〈c, σ〉 ∈ C is called a term constant of type σ . We generally
write c:σ if 〈c, σ〉 ∈ C . Note that the type and term constants must be consistent, in that the
type of each term constant may only contain the given type constants.

Example 2.1 An example λ→ signature is ΣPCF , which gives us the language PCF (without
cartesian products). This signature provides symbols for natural number and boolean operations,
together with fixed-point operators at all types.

type constants: nat , bool
term constants: 0, 1, 2, 3, 4, . . . :nat

true, false : bool
plus :nat → nat → nat
Eq?:nat → nat → bool
condσ: bool → σ→ σ→ σ each type σ
fixσ: (σ→ σ)→ σ each type σ

5

We may write terms over this signature in a more familiar form using syntactic sugar such as

M + N
def
= plus M N

if M then N else P
def
= condσ M N P

where the type subscript on cond is determined by the types of N and P .

The λ→ terms over signature Σ and their types are defined simultaneously using axioms and
inference rules. For each term constant c of type σ , we have the axiom

(cst) ∅ ⊲ c : σ

We assume some countably infinite set Var of variables {v0, v1, . . .}. Variables are given types by
the axiom

(var) x:σ ⊲ x : σ

where σ must be a λ→ type over Σ. The rule

(add var)
Γ ⊲ M : σ

Γ, x: τ ⊲ M : σ

allows us to add an additional hypothesis to the typing context. For lambda abstraction, we have

(→ Intro)
Γ, x:σ ⊲ M : τ

Γ ⊲ (λx:σ.M) : σ→ τ

Intuitively, this rule says that if M specifies a result of type τ for every x:σ , then the expression
λx:σ.M defines a function of type σ→ τ . Function applications are written according to the rule

(→ Elim)
Γ ⊲ M : σ→ τ, Γ ⊲ N : σ

Γ ⊲ MN : τ

which says that we may apply any function with type σ→ τ to an argument of type σ to produce
a result of type τ .

We say M is a λ→ term over signature Σ with type τ in context Γ if Γ ⊲ M : τ is either a
typing axiom for Σ, or follows from axioms by rules (add var), (→ Intro) and (→ Elim). As an
expository convenience, we will often write Γ ⊲ M : τ to mean that “Γ ⊲ M : τ is derivable,” in
much the same way as one often writes a formula ∀x. P (x), in logic, as a way of saying “∀x. P (x)
is true.” A proof of a typing assertion is called a typing derivation.

2.2 Equations

We write equations between typed lambda terms in a form that includes the assignment of types
to variables. Since the types of terms will be used in the equational proof system, we also include
the types of terms. Specifically, a typed equation has the form

Γ ⊲ M = N : τ

where we assume that M and N have type τ in context Γ. Intuitively, the equation

{x1:σ1, . . . , xk:σk} ⊲ M = N : τ

6

means that for all type-correct values of the variables x1:σ1, . . . , xk:σk , expressions M and N
denote the same element of type τ . Another way of writing this equation might be

∀x1:σ1 . . . ∀xk:σk.M = N : τ.

A “structural” rule for equations is

(add var)
Γ ⊲ M = N : σ

Γ, x: τ ⊲ M = N : σ

which lets us add variables to the type assignment. We also have an axiom and inference rules
making provable equality an equivalence relation and a congruence.

(ref) Γ ⊲ M = M : σ

(sym)
Γ ⊲ M = N : σ

Γ ⊲ N = M : σ

(trans)
Γ ⊲ M = N : σ, Γ ⊲ N = P : σ

Γ ⊲ M = P : σ

(ξ)
Γ, x:σ ⊲ M = N : τ

Γ ⊲ λx:σ. M = λx:σ.N : σ→ τ

(ν)
Γ ⊲ M1 = M2 : σ→ τ, Γ ⊲ N1 = N2 : σ

Γ ⊲ M1N1 = M2N2 : τ

For λ→ , three axioms remain. The first describes renaming of bound variables, while the other
two specify that the introduction and elimination rules are “inverses” of each other. The axiom for
renaming bound variables is

(α) Γ ⊲ λx:σ. M = λy:σ.[y/x]M : σ→ τ, provided y 6∈ FV (M)

The second axiom, (β), shows how to evaluate a function application using substitution.

(β) Γ ⊲ (λx:σ.M)N = [N/x]M : τ

Finally, we have an axiom for equating extensionally equivalent function expressions,

(η) Γ ⊲ λx:σ.(Mx) = M : σ→ τ, provided x 6∈ FV (M)

It is easy to see that if x 6∈ FV (M), then by (β) we have (λx:σ. Mx)y = My for any argument
y:σ . Therefore M and λx:σ. Mx define the same function.

For PCF, we add several “non-logical” axioms. (These are “non-logical” in the sense that they
are specific axioms about term constants, not “logical” axioms that apply to all languages based on
typed lambda calculus.) For natural numbers and conditional, we have infinitely many equational
axioms:

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 . . . 3 + 2 = 5 . . .
Eq? 0 0 = true Eq? 0 1 = false Eq? 1 0 = false Eq? 1 1 = true . . .
if true then M else N = M if false then M else N = N

The axiom for fix is

(fix) fixσ = λf :σ→ σ. f(fixσ f)

from which it is easy to derive equations such as fixσ M = M(fixσ M).

7

2.3 Reduction, convertibility and confluence

Reduction is a “directed” form of equational reasoning that corresponds to symbolic evaluation of
programs. In simply-typed lambda calculus, we orient each of the equational axioms except (α)
and (ref). Reductions for term forms associated with products, sums and other simple types may
be found in [Gun92, Mit96] and elsewhere. We discuss PCF reduction below.

While we are only interested in reducing typed terms, we may define reduction on simply-typed
terms without mentioning types. Since reduction models program evaluation, this is a way of
emphasizing that λ→ evaluation may be done without examining the types of terms. We will also
see that the type of a term does not change as it is reduced. However, the connections between
typed and untyped reduction may become more subtle in the presence of subtyping.

For clarity, we repeat the equational axioms in their reduction form.

(β)red (λx:σ. M)N → [N/x]M,

(η)red λx:σ.Mx→M, provided x 6∈ FV (M).

A term of the form (λx:σ. M)N is called a β -redex and λx:σ. Mx (where x 6∈ FV (M)) an
η -redex. We say M β, η -reduces to N in one step, written M →β,η N , if N can be obtained
by applying (β) or (η) to some subterm of M . The reduction relation →→β,η is the reflexive and
transitive closure of one-step β, η -reduction.

It can be shown that one-step reduction preserves type.

Lemma 2.2 If Γ ⊲ M : σ , and M →β,η N , then Γ ⊲ N : σ .

It follows by an easy induction that →→β,η also preserves type. This is often called the subject
reduction property, based on terminology that regards M :σ as a “sentence” whose subject is M
and predicate is σ .

It is useful to write Γ ⊲ M →→ N : σ when Γ ⊲ M : σ is well-typed and M →→ N . We know by
the Lemma above that in this case, we also have Γ ⊲ N : σ . A term M is in β, η -normal form if
there is no N with M →β,η N .

The main theorems about β, η -reduction are confluence and strong normalization. These may
be proved using the technique of logical relations (summarized in Section 3).

Confluence: β, η -Reduction is confluent on λ→ terms.

Strong Normalization: There is no infinite sequence M0 →β,η M1 →β,η M2 →β,η . . .
of β, η -reductions on λ→ terms.

The second property is called “normalization” since it states that every term may be reduced to a
normal form (a term that cannot be reduced further). The “strong” part of the statement is that
a normal form is reached by any sequence of reductions. In contrast, weak normalization is the
property that every term may be reduced to a normal form by some sequence of reductions, but
not necessarily all.

For PCF, we adopt several “non-logical” reductions based on the corresponding equational
axioms. Orienting the equations above in the intuitively plausible direction gives us

0 + 0→ 0 0 + 1→ 1 1 + 0→ 1 . . . 3 + 2→ 5 . . .
Eq? 0 0→ true Eq? 0 1→ false Eq? 1 0→ false Eq? 1 1→ true . . .
if true then M else N →M if false then M else N → N

8

The reduction axiom for fix is

(fix) fixσ→λf :σ→ σ. f(fixσ f)

from which it is easy to derive reductions such as fixσ M →→ M(fixσ M). It is easy to see that
fix -reduction destroys strong normalization. However, it may be shown using the techniques given
in this paper that various versions of PCF with arithmetic, boolean operations and fixed-point
operators are confluent. (See [Mit96] for further information.)

It is worth noting that β, η -reduction is not confluent on pre-terms, strings that look like terms
but are not necessarily well-typed. To see this, consider the pre-term

λx:σ.(λy: τ . y)x

Using β -reduction, we may simplify this to λx:σ. x , while η -reduction gives us λy: τ . y . Since
these normal forms differ by more than names of bound variables when σ 6= τ , confluence fails for
pre-terms.

One consequence of this example, which is taken from [vD80, Ned73], is that confluence for typed
lambda calculus does not follow immediately from the confluence of untyped lambda calculus, even
though the typed terms could be considered as a subset of the untyped terms (cf. [Bar84, Appendix
A]). The reason is that the simple “proof” of confluence for typed lambda calculus by appeal to the
Church-Rosser theorem for untyped lambda calculus applies to pre-terms as well as typed terms.
Since this leads to an incorrect conclusion for pre-terms, it is not a correct proof for typed terms.
The reader familiar with other presentations of typed lambda calculus may wonder whether this
is still the case if we do not write type expressions in typed terms, but use variables that are each
given a fixed type. In this alternate presentation of λ→ , α-conversion must be restricted so that
we only replace one bound variable by another with the same type. With this restriction on α-
conversion, the example demonstrating failure of confluence still applies. Thus confluence for λ→

does not seem to follow from the Church-Rosser theorem for untyped β, η -reduction directly. It is
worth noting, however, that if we drop η -reduction, then we do have confluence for β -reduction
on λ→ pre-terms.

The convertibility relation ↔β,η on typed terms is the least type-respecting equivalence relation
containing reduction →→β,η . For typographical simplicity, we will drop the β, η subscripts for the
rest of this paragraph. Conversion can be visualized by saying that Γ ⊲ M ↔ N : σ iff there is a
sequence of terms M0, . . . ,Mk with Γ ⊲ Mi : σ such that

M ≡M0 →→M1 ←← . . .→→Mk ≡ N.

In this picture, the directions of →→ and ←← need not be regarded as significant. However, by
reflexivity and transitivity of →→ , this order of reduction and “backward reduction” is completely
general.

A consequence of confluence is the following connection between reduction and provable equality.

Corollary 2.3 An equation Γ ⊲ M = N : τ is provable from the axioms of λ→ iff Γ ⊲ M ↔ N : τ
iff there is some term P with M →→β,η P and N →→β,η P .

This illustrates one of the general interests in confluence, namely, confluence implies a connection
between reduction and equational reasoning. This connection may be used to prove the consistency
of the equational proof system or, more generally, to show that certain equations are not provable
from a set of equational axioms. The other general reason for studying confluence is that when
we regard reduction as a model of program execution, confluence implies that the result of a
computation is independent of evaluation order.

9

2.4 Subtyping

2.4.1 Programming language motivation

Subtyping appears in a variety of programming languages. An early form of subtyping appears
in the Fortran treatment of “mixed mode” arithmetic: arithmetic expressions may be written
using combinations of integer and real (floating point) expressions, with integers converted to real
numbers as needed. The conversion of integers to reals has some of the properties that are typical
of subtyping, since we generally think of the mathematical integers as a subset of the real numbers.
However, conversion in programs involves changing the representation of a number, which is not
typical of subtyping with records or objects. Fortran mixed mode arithmetic also goes beyond
basic subtyping since (i) Fortran provides implicit conversion from reals to integers by truncation,
which is different since this operation changes the value of the number that is represented, and (ii)
Fortran also provides overloaded operations, such as +: int × int → int and +: real × real → real .

A cleaner example of subtyping appears in Pascal subranges or the closely related range con-
straints of Ada (see [Hor84], for example). The Pascal subrange [1..10] containing the integers
between 1 and 10 is a subtype of the integers. If x is a variable of type [1..10], and y of type
integer, then we can assign y the value of x since every integer between 1 and 10 is an integer. More
powerful examples of subtyping appear in typed object-oriented languages such as Eiffel [Mey92]
and C++ [ES90]. In these languages, a class of objects, which may be regarded for the moment as a
form of type, is placed in a subtype hierarchy. An object of a subtype may be used in place of one of
any supertype, since the subtype relation guarantees that all required operations are implemented.
Moreover, although the representation of objects of one type may differ from the representation
of objects of a subtype, the representations are generally compatible in a way that eliminates the
need for conversion from one to another.

2.4.2 Typed lambda calculus with subtyping

The notation A <: B is commonly used to indicate that A is a subtype of B , since <: provides a
rough ASCII approximation of the subset symbol “⊆”. We use λ→

<: to denote the extension of λ→

with subtyping. Surprisingly, reduction for λ→
<: is substantially more complicated than for λ→ .

Like λ→ , the definition of λ→
<: terms depends on a signature, which now includes subtype

assumptions about the type symbols. Formally, a λ→
<: signature is a triple Σ = 〈B,Sub, C〉 with B

a set of type constants, Sub a set of subtyping assertions b <: b′ between type constants b, b′ ∈ B ,
and C a set of term constants, each with a unique specified type written using → and type constants
from B .

The λ→
<: type expressions over signature 〈B,Sub, C〉 are the same as the λ→ type expressions

over signature 〈B,C〉 . Note that we only consider subtype assumptions between atomic type
names. A consequence of this property is given in Lemma 2.4 below.

The distinguishing feature of λ→
<: is the subtype relation, defined from the signature by the

following axiom and inference rules.

(ref <:) τ <: τ

(trans <:)
ρ <: σ, σ <: τ

ρ <: τ

(→ <:)
ρ <: τ, τ ′ <: ρ′

τ → τ ′ <: ρ→ ρ′

10

If we think of subtyping as an ordering, the last rule “says” that → is monotonic in its second
argument, but antimonotonic in its first.

We write Σ ⊢ σ <: τ if the subtype assertion σ <: τ is provable from assertions in Sub using
the axiom and inference rules given above. It is easy to show that if Σ ⊢ σ <: τ , then the
type expressions σ and τ must contain the same number and parenthesization of → ’s. To state
this precisely, we let the matching relation on types be the least relation satisfying the following
conditions:

b matches b′ for any type constants b, b′

σ1→ σ2 matches τ1→ τ2 whenever σi matches τi (i = 1, 2)

Lemma 2.4 For any λ→
<: signature Σ, if Σ ⊢ σ <: τ then σ matches τ .

2.4.3 Terms

The terms of λ→
<: are given by the same typing rules as in λ→ , namely (cst), (var), (→ Intro),

(→ Elim), and (add var), plus the additional rule:

(subsumption)
Γ ⊲ M : σ, Σ ⊢ σ <: τ

Γ ⊲ M : τ

2.4.4 Equations

The equational proof system of λ→
<: consists of exactly the same axioms and proof rules as λ→

without subtyping. Specifically, we have (ref), (sym) and (trans) making provable equality an
equivalence relation, the technical rule (addvar) for adding variables to the type assignment, axioms
(α), (β) and (η) for lambda abstraction and application, and (ξ) and (ν) making provable equality
a congruence relation.

There is a common typing confusion associated with the extensionality axiom, (η), that il-
lustrates the importance of writing types as part of equations. The extensionality axiom has the
form

Γ ⊲ λx: τ .(Mx) = M, x not free in M

but it is not clear that the two terms involved necessarily have the same type. For example, suppose
M has the form λy: τ ′. N with τ <: τ ′ . Then M has type τ ′→ ρ but λx: τ .(Mx) does not. Thus,
in writing λx: τ .(Mx) = M , it could appear that we are equating terms with different types.
However, since τ ′→ ρ <: τ → ρ , both have type τ → ρ . Our axiom scheme

Γ ⊲ λx: τ .(Mx) = M : τ → ρ, x not free in M,

applies whenever Γ ⊲ λx: τ .(Mx) : τ → ρ and Γ ⊲ M : τ → ρ are both derivable, which will be the
case whenever Γ ⊲ M : τ → ρ is derivable.

A derived rule. A general principle about subtyping and equality is given by the inference rule

(subsumption eq)
Γ ⊲ M = N : τ, Σ ⊢ τ <: ρ

Γ ⊲ M = N : ρ

which we do not need to add to the proof system since it is derivable from congruence and (β).
More specifically, if τ <: ρ , then we have the typing

Γ ⊲ λx: τ . x : τ → ρ

11

and so by reflexivity, the equation

Γ ⊲ λx: τ . x = λx: τ . x : τ → ρ.

If Γ ⊲ M = N : τ , then by applying the identity to each side (using (ν)), we may prove

Γ ⊲ (λx: τ . x)M = (λx: τ . x)N : ρ

which gives us the conclusion of (subsumption eq) by (β) and transitivity.

Failure of Confluence. For any λ→
<: term Γ ⊲ λx:σ. M : σ→ τ , with ρ <: σ , we can prove the

equation
Γ ⊲ λx:σ. M = λx: ρ. M : ρ→ τ

One way to develop some intuition for this equation is to suppose that we give the lambda ab-
straction Γ ⊲ λx:σ.M : σ→ τ type ρ→ τ by subsumption. If we then apply this function to an
argument Γ ⊲ N : ρ and β -reduce the resulting term,

(λx:σ.M)N → [N/x]M,

we will substitute a term of type ρ for the bound variable of type σ . This suggests that if we
change the type of λx:σ.M by subsumption, then we have a term that is “functionally equivalent”
to the term λx: ρ.M with the formal parameter x given type ρ instead of σ . In other words,
subsumption effectively changes the types of lambda-bound variables.

We can prove the equation above by applying λx:σ. M to a free variable x: ρ and then lambda-
abstracting x . We begin with the typing derivation

Γ ⊲ λx:σ.M : σ→ τ by assumption
Γ, x: ρ ⊲ λx:σ. M : σ→ τ by (add var)
Γ, x: ρ ⊲ x : σ by (var), (subsumption), (add var)
Γ, x: ρ ⊲ (λx:σ.M)x : τ by (→ Elim)
Γ ⊲ λx: ρ.(λx:σ.M)x : ρ→ τ by (→ Intro)

At this point, we apply a “trick,” using (β) to show

Γ ⊲ λx: ρ.(λx:σ. M)x = λx: ρ.M : ρ→ τ

and (η) to show
Γ ⊲ λx: ρ.(λx:σ.M)x = λx:σ.M : ρ→ τ

giving us the desired equation by symmetry and transitivity. Since both of these terms would be
in normal form when M is a normal form, the last few steps also show that confluence fails for
β, η -reduction on λ→

<: terms. We return to confluence for λ→
<: in Section 5.

3 Reduction properties of typed lambda terms

Confluence, normalization and other properties of typed reduction may be proved using logical
relations. It will be useful to review a general theorem from [Mit96] that has these two properties
as corollaries. The reason for considering the general theorem is that we are interested in both
confluence (since labeled confluence implies unlabeled confluence) and termination (since this is

12

used for completeness of leftmost reduction). Since the proof of the main theorem in this section
requires substantial machinery that is not related to labeling, we simply state the results in this
section without proof.

A property of typed lambda terms, or predicate on terms is a type-indexed family of sets of typed
lambda terms. If S = {Sσ} is a predicate, with Sσ the set of all terms of type σ with property
S , then we write S(M) to indicate that M :σ and M ∈ Sσ for some type σ . When we want to
specify the type of M , we write Sσ(M).

A predicate S is type-closed if the following three conditions are satisfied.

(a) If S(M1), . . . ,S(Mk), then S(xM1 . . . Mk), where x is any variable of the appropriate type,

(b) If Sτ (Mx) holds for every variable x of type σ , then Sσ→τ (M),

(c) If Sσ(N) and Sb(([N/x]M)N1 . . . Nk), then Sb((λx:σ.M)NN1 . . . Nk) for each base type b .

In verifying that a particular predicate satisfies (b), we generally assume S(Mx) for some x not
free in M and show S(M).

Theorem 3.1 If S is any type-closed property of typed λ→ terms, then S(M) for every term
Γ ⊲ M : σ .

Strong normalization is the predicate SN defined by

SN(M) iff there is no infinite sequence of reductions from M.

We may regard confluence as a predicate on typed λ→ terms by defining

CR(M) iff ∀M1,M2[M →→M1 ∧M →→M2 ⊃ ∃N. M1 →→ N ∧M2 →→ N].

In verifying that CR is type-closed, the most difficult condition is (b). While it is easy to see that
SN(Mx) ⊃ SN(M), it is not immediate that CR(Mx) ⊃ CR(M), since there may be reductions of
Mx that do not apply to M .

Lemma 3.2 The predicate CR is type-closed.

Combining Lemma 3.2 with Theorem 3.1, we have confluence of β, η -reduction.

Theorem 3.3 (Confluence) β, η -Reduction is confluent on typed lambda terms.

3.1 Extending the type-closed method to constants

We prove properties of labeled and other reduction by extending the “type-closed” method to λ→

terms with constants. With constants that may have associated reduction rules, the proof that
every term has a type-closed property S has four main parts:

1. Define a predicate P on the applicative structure of terms, from S , by

P b(M) iff S(M)
P σ→τ (M) iff ∀N.P σ(N) implies P τ (MN)

2. Show that P σ(M) implies S(M).

13

2′. Show that P σ(c) for each term constant c:σ .

3. Show that P is admissible, a technical property defined in [Mit96]. This allows us to
conclude that P σ(M) holds for every well-typed term Γ ⊲ M : σ .

Theorem 3.1 above is proved using steps 1, 2 and 3. If there are no reduction rules for constants,
then we can treat constants just like variables. However, with reduction rules, condition (a) of the
definition of type-closed may fail for constant c in place of variable x . (For example, M may be
strongly normalizing and fix M not strongly normalizing.) Therefore, we must treat constants by
some other means.

The main idea in extending Theorem 3.1 is that in treating constant c , we may need some
properties of P in proving P σ(c). We therefore insert an extra step (2′) in the middle of the
proof. (The arguments in steps 1, 2 and 3 are essentially the same with or without term constants.)
Rather that try to identify a sufficient condition for step 2′ to succeed, we simply state a theorem
that says the method works when it works. We will use this for labeled fixed points and other
operations.

Theorem 3.4 Let S be a type-closed property of λ→ terms and let P be the predicate on terms
defined from S as above. If P(c1), . . . ,P(ck), for term constants c1, . . . , ck , then P(M) and
therefore S(M) holds for every well-typed λ→ term M over c1, . . . , ck .

4 Reduction with fix and additional operations

In this section, we analyze reduction for typed lambda calculus with fix and other operations.
An important idea for handling fix is to label each occurrence of a fixed-point operator in a term
with a bound on the number of reductions that may be applied. This produces a confluent and
terminating reduction relation.

4.1 Labeled reduction

There are two versions of labeled reduction, one used to prove semantic results such as the Ap-
proximation Theorem and Computational Adequacy (see [Mit96]), and the other used to prove
reduction properties. After defining both forms of reduction, we will focus on the simpler version
used for reduction properties.

If we begin with simply-typed lambda calculus over signature Σ, containing fixed-point con-
stants at some types, then the labeled terms over Σ are defined using the extended signature
Σlab ⊇ Σ obtained by adding a constant, fixn

σ , for each type σ that has a fixed-point operator in
Σ and for each natural number n ≥ 0. The constant fixn

σ is called the labeled fixed-point operator
with label n . For semantic results, it is common to also add a constant ⊥σ for each type σ that
has a fixed-point operator. We use the notation Σlab,⊥ for the signature Σlab,⊥ ⊇ Σlab ⊇ Σ with
labeled fixed-point operators and constants ⊥σ at appropriate types. We say M is a labeled term
(over Σ) if M is a well-typed term over Σlab,⊥ and M does not contain any fix without a label.
We write lab(M) for the set of labeled terms that become syntactically identical to M when we
replace each fixn

σ by fixσ .
The two forms of reduction for labeled fixed-point operators are:

(lab+) fixn+1
σ →λf :σ→ σ. f(fixn

σ f)

(lab0) fix 0
σ→λf :σ→ σ.⊥σ

14

We will call reduction using the first reduction axiom positive labeled reduction, or simply labeled
reduction for short, and refer to this using the symbol lab+ . The second reduction will be indicated
by lab0 . Reduction with both reduction axioms will be denoted lab+,0 . We use lab+(0) for either
lab+ or lab+,0 . It is also possible to add reduction rules for ⊥ , such as (⊥σ→τM) → ⊥τ , but we
will not consider this.

In semantic analysis, we may wish to treat fixσ as one of its approximants, λf :σ→ σ. fn(⊥).
This is precisely what happens if we label an occurrence of fixσ with the number n and use lab+,0

reduction. The problem with full lab+,0 reduction, for the purpose of analyzing reduction without
labels, is that the reduction of fix 0

σ M to (λf :σ→ σ.⊥σ)M allows us to discard the subterm M on
subsequent β -reduction. This makes it impossible to use confluence of β, lab+,0 -reduction to prove
confluence of β,fix -reduction, for example, in any direct way. Therefore, both forms reduction
are useful. Since this paper is primarily concerned with reduction properties, we will be primarily
concerned with lab+ .

We develop some general connections between labeled reduction and unlabeled reduction below,
in a setting that allows for a set R of additional rewrite axioms. Like the common rewrite axioms
for addition and conditional, for example, these must be left-linear. This means that if L → R is
a reduction, then no term variable may occur more than once in the left-hand side, L . Just to
clarify notation, we write R, β, lab+ for the combination of reduction given by a set R of reduction
axioms, β -reduction and positive labeled reduction lab+ . Two basic and useful connections are
given in the following lemmas.

Lemma 4.1 (Lifting) Suppose R is left-linear and M
R,β,fix
−−−−−→→ N . There is a natural number

k such that if M# ∈ lab(M), with each label in M# at least k , then M# R,β,lab+

−−−−−−→→ N# for some
N# ∈ lab(N).

Lemma 4.2 (Projection) If M# R,β,lab+

−−−−−−→→ N# , where M# ∈ lab(M) and N# ∈ lab(N), then

M
R,β,fix
−−−−−→→ N .

Both are proved by easy inductions on the length of reduction sequences. In Lemma 4.1, the
number k is essentially the length of the reduction sequence from M to N , since any single
reduction could be carried out by labeling any fix that is reduced with any number at least 1. The
importance of assuming that R is left-linear is discussed below. Since lab+,0 contains lab+ , the
first lemma also holds for R, β, proj , lab+,0 . However, Lemma 4.2 fails for lab+,0 , since the rule
for fix 0 cannot be simulated using unlabeled fix . These two lemmas are used to prove the basic
connection between confluence of labeled and unlabeled reduction.

Proposition 4.3 If R, β, lab+ -reduction is confluent on labeled terms, and R is left-linear, then
R, β,fix -reduction is confluent on unlabeled terms.

Proof Suppose N
R,β,fix
←←−−−−−M

R,β,fix
−−−−−→→ P . By Lemma 4.1, there are labelings M# , N# , and

P# of these terms (respectively) such that N# R,β,lab+

←←−−−−−−M# R,β,lab+

−−−−−−→→ P# . Since R, β, lab+ -
reduction is confluent, N# and P# must have a common reduct Q# . By Lemma 4.2, we may erase

labels to obtain N
R,β,fix
−−−−−→→ Q

R,β,fix
←←−−−−− P . This shows that R, β,fix -reduction is confluent.

It is important to understand how left-linearity is used in the proof of Lemma 4.1. The critical
step is the base case for a reduction from R . The property that we may choose labels arbitrarily,
as long as they are all big enough, may fail if we have a non-linear rule, since some reduction rule

15

may be applicable only if two subterms have the same label. For example, consider the following
algebraic rewrite rules for Eq?:nat → nat → bool , succ:nat → nat and true, false : bool .

Eq?xx → true
Eq?x (succ x) → false

Lemma 4.1 fails if R consists solely of either one of these rules, or both of them. These rules,
together, also provide a counter-example to Proposition 4.3, if we drop the assumption that R is
left-linear, since we may reduce Eq? (fix succ) (fix succ) to both true and false . The first reduction
is immediate, while the second proceeds by

Eq? (fix succ) (fix succ)→→ Eq? (fix succ) (succ (fix succ)).

If we label Eq? (fix succ) (fix succ) in any way, then at most one of these reductions will be possible.

4.2 Termination and confluence of labeled reduction

As an application of Theorem 3.4, we show that labeled PCF reduction is strongly normalizing.
We use pcf to indicate reduction using the axioms of PCF, and pcf + for PCF reduction with lab+

replacing fix -reduction. It is a simple matter to extend the argument to show that pcf +,0 -reduction,
with lab0 added, is terminating.

We begin by defining the property we wish to establish, namely

S(M) iff pcf + -reduction is terminating from M

where M may be any labeled PCF term, i.e., any λ→ term over the signature with type constants
nat and bool , numerals, boolean constants true and false , addition, equality test Eq? on nat ,
conditional on each type, and labeled fixed-point constants fixn

σ for each type σ and all n ≥ 0.
Let T be the set of typed terms over this signature, constructed using infinitely many variables at
each type.

Let P ⊆ T be the typed predicate defined from S as above. We must show P(c) for each
constant of the signature. The numerals and boolean constants are covered by the fact that P b(c)
iff S(c), since all of these constants are normal forms. It remains to show that P holds for each of
the remaining constants.

We will use the subsidiary notion of elimination context, given by the following grammar:

E ::= [] | EM

It is easy to see that, for λ→ , every elimination context has the form E ≡ []M1 . . . Mk for some
sequence of terms, with E [N] ≡ NM1 . . . Mk . This form of context is often called an “applicative
context” since it applies a term to a series of arguments. However, we use the phrase “elimination
context” since the generalization to other types involves the elimination term forms. For example,
an elimination context for λ×,→ would allow us to apply projection functions (but not to form
pairs, since pairing is the introduction form for products). We say E is a σ, τ -elimination context
if E [M] has type τ whenever M has type σ . We write P(E) if E ≡ []M1 . . . Mk and P(Mi) holds
for 1 ≤ i ≤ k .

A useful fact to notice is that by Theorem 3.4, we have P(M) for every term without constants.
A consequence is that for every type σ and every type constant b ∈ {nat , bool}, there is a σ, b-
elimination context E with P(E) and therefore S(E). This is easily verified by induction on types,
using a variable wherever we need a term M with P σ(M).

16

The following lemma will be useful in reasoning about constants. The first two parts do not
depend on the choice of S , only the definition of P from S . Part (iii) relies only on the fact that
S is closed under reduction.

Lemma 4.4 Let M ∈ T σ and let b be nat or bool .

(i) If P b(E [M]) for every σ, b-context E with P(E), then P σ(M).

(ii) If P σ(M) and E is a σ, b-context with P(E), then P b(E [M]).

(iii) If P σ(M) and M
pcf +

−−−−→→ N , then P σ(N).

Proof We prove (i) by induction on the type of M . If M : b , then the only b, b-elimination context
is E = [] and the lemma clearly holds. If M :σ→τ , then every relevant σ→τ, b-elimination context
has the form E [[]N0] , where P σ(N0) and E is a τ, b-elimination context with P(E). Let N ∈ T σ be
any term with P σ(N), and consider any τ, b-elimination context E with P(E). By the inductive
hypothesis for MN ∈ T τ , we have P τ (MN). Since N was chosen arbitrarily, it follows that
P σ→τ (M). This proves (i). Part (ii) may be proved by an easy induction on types.

We prove part (iii) from (i) and (ii) using the fact that if S(M) and M
pcf +

−−−−→→ N , then S(N).
More specifically, suppose P σ(M) and let E be any σ, b-elimination context with P(E). By (ii),

we have P b(E [M]). If M
pcf +

−−−−→→ N , then E [M]
pcf +

−−−−→→ E [N] . Since P b(Q) iff S(Q), we therefore
have P b(E [N]). Since this is true for every σ, b-context E with P(E), we have P σ(N) by (i). This
proves the lemma.

Lemma 4.5 When P is defined from strong normalization of pcf + -reduction, we have P(plus),
P(Eq?), P(condσ), and P(fixn

σ) for each type σ and natural number n ≥ 0.

Proof For addition, we assume P nat (M) and P nat (N) and demonstrate P nat (M +N). It suffices
to show that M + N is strongly normalizing. However, this follows immediately since M and N
are both strongly normalizing and the reduction axioms for + only produce a numeral from two
numerals. The proof for equality test, Eq?, is essentially the same.

For conditional, we take P bool (B), P σ(M), P σ(N) and show P σ(if B then M else N).
By (i) of Lemma 4.4, it suffices to show that if E [if B then M else N] ∈ T b , for P(E) and
b ≡ nat or b ≡ bool , then E [if B then M else N] is strongly normalizing. However, this is

an easy case analysis, according to whether B
pcf +

−−−−→→ true , B
pcf +

−−−−→→ false , or neither, using (ii)
of Lemma 4.4.

The remaining case is a labeled fixed-point constant fixn
σ . For this, we proceed by induction

on the label. The base case, for fix 0
σ , is easy since there is no associated reduction. For fixn+1

σ , we
assume P σ→σ(M) and let E be any elimination context with P(E) and E [fixn+1

σ M] ∈ T b . We prove
the lemma by showing that E [fixn+1

σ M] is strongly normalizing. If there is an infinite reduction
sequence from this term, then there must also be an infinite reduction sequence from E [M(fixn

σ M)],
since every step of the first may be mimicked by one or two steps of the second (except for the
inevitable lab+ -reduction and subsequent β -reduction, which merely serve to synchronize the two
sequences). However, by the induction hypothesis and Lemma 4.4, we have P σ(fixn

σ M); together
with P σ→σ(M) and P(E), this implies P b(E [M(fixn

σ M)]), hence there is no such infinite reduction
sequence from E [M(fixn

σ M)]. This completes the induction step and proves the lemma.
Since Lemma 4.5 is easily extended to pcf +,0 , we have the following corollary of Theorem 3.4.

Theorem 4.6 Both pcf + and pcf +,0 -reduction are strongly normalizing on labeled PCF terms.

17

Confluence. We also wish to show that both forms of labeled PCF reduction are confluent.
A general theorem that could be applied, if we did not have conditional at all types, is given in
[BT88, BTG89]. The general theorem is that if typed lambda calculus is extended with a confluent,
algebraic rewrite system, the result is confluent. The proof of this is nontrivial, but is substantially
simplified if we assume that R is left-linear. That is in fact the case we are interested in, since
left-linearity is essential to Proposition 4.3 anyway. An adaptation of this proof to typed lambda
calculus with labeled fixed-point operators has been carried out in [HM90, How92]. For the purposes
of proving our desired results as simply as possible, however, it suffices to prove weak confluence,
since confluence then follows by Newman’s Lemma [Bar84, Mit96]. To emphasize the fact that the
argument does not depend heavily on the exact natural number and boolean operations of PCF, we
show that adding β, lab+(0) to any weakly confluent reduction system preserves weak confluence,
as long as there are no symbols in common between R and the reduction axioms of β, lab+(0) .
This is essentially an instance of orthogonal rewrite systems, as they are called in the literature on
algebraic rewrite systems [Toy87], except that application is shared. A related confluence property
of untyped lambda calculus is Mitschke’s δ -reduction theorem [Bar84], which shows that under
certain syntactic conditions on R , untyped R, β -reduction is confluent.

Lemma 4.7 Let R be a set of reduction axioms of the form L→ R , where L and R are lambda
terms of the same type and L does not contain an application xM of a variable to an argument
or any of the symbols λ, fix or any fixn

σ . If R is weakly confluent, then R, β, lab+(0) is weakly
confluent.

Proof The proof is a case analysis on pairs of redexes. We show two cases involving β -reduction
and reduction from R . The significance of the assumptions on the form of L is that these guar-
antee that if a subterm of a substitution instance [M1, . . . ,Mk/x1, . . . , xk]L of some left-hand-side
contains a β, lab+(0) redex, then this redex must be entirely within one of M1, . . . ,Mk . The lemma
would also hold with any other hypotheses guaranteeing this property.

The first case is an R-redex inside a β -redex. This gives a term of the form

(λy:σ.(. . . [M1, . . . ,Mk/x1, . . . , xk]L . . .))N

reducing to either of the terms

(. . . [N/y][M1, . . . ,Mk/x1, . . . , xk]L . . .) (λy:σ.(. . . [M1, . . . ,Mk/x1, . . . , xk]R . . .))N

the first by β -reduction and the second by an axiom L → R from R . It is easy to see that both
reduce in one step to

(. . . [N/y][M1, . . . ,Mk/x1, . . . , xk]R . . .)

The other possible interaction between β -reduction and R begins with a term of the form

(. . . [M1, . . . ,Mk/x1, . . . , xk]L . . .)

where one of M1, . . . ,Mk contains a β -redex. If Mi →M ′
i , then this term reduces to either of the

two terms

(. . . [M1, . . . ,M
′

i , . . . ,Mk/x1, . . . , xk]L . . .) (. . . [M1, . . . ,Mi, . . . ,Mk/x1, . . . , xk]R . . .)

in one step. We can easily reduce the first to

(. . . [M1, . . . ,M
′

i , . . . ,Mk/x1, . . . , xk]R . . .)

18

by one R step. Since we can also reach this term by some number of β -reductions, one for each
occurrence of xi in R , local confluence holds. The cases for other reductions in a substitution
instance of the left-hand-side of an R axiom are very similar.

By Newman’s Lemma [Bar84, Mit96], it follows that pcf + and pcf +,0 are confluent. We may
use Proposition 4.3 to derive confluence of pcf -reduction from confluence of pcf + . This gives us
the following theorem.

Theorem 4.8 The reductions pcf + and pcf +,0 are confluent on labeled PCF terms and pcf -
reduction is confluent on ordinary (unlabeled) PCF terms.

4.3 Completeness of leftmost reduction

The final result in this section is that if R is a set of “left-normal” rules (defined below), and
R, β, lab+ is confluent and terminating, then the leftmost reduction strategy is complete for finding
R, β,fix -normal forms. Since the PCF rules are left-normal, leftmost reduction is complete for
finding normal forms of PCF programs.

A reduction axiom is left-normal if all the variables in the left-hand side of the rule appear to
the right of all the term constants. For example, all of the PCF rules for natural numbers and
booleans are left-normal. If we permute the arguments of conditional, however, putting the boolean
argument at the end, then we would have reduction axioms

cond x y true −→ x,

cond x y false −→ y.

These are not left-normal since x and y appear to the left of the constants true and false .
Intuitively, if we have left-normal rules, then we may safely evaluate the arguments of a function
from left to right. In many cases, it is possible to replace a set of rules with essentially equivalent
left-normal ones by either permuting arguments or introducing auxiliary function symbols (see
[Mit96]). However, this is not possible for inherently “non-sequential” functions such as parallel-or.

We will prove the completeness of leftmost reduction using strong normalization and confluence
of positive labeled reduction, and the correspondence between labeled and unlabeled reduction.
Since labeled fix reduction may terminate with fix 0 where unlabeled fix reduction could continue,
our main lemma is that any fix 0 occurring to the left of the leftmost redex will remain after reducing
the leftmost redex.

Lemma 4.9 Let R be a set of left-normal reduction axioms with no left-hand-side containing fix 0 .

If M
R,β,lab+

−−−−−−−→ N by the leftmost reduction step, and fix 0 occurs to the left of the leftmost redex
of M , then fix 0 must also occur in N , to the left of the leftmost redex if N is not in normal form.

Proof Suppose M ≡ C[L]→ C[R] ≡ N by contracting the leftmost R, β, lab+ -redex and assume
fix 0 occurs in context C[] to the left of []. If N ≡ C[R] is in normal form, then fix 0 occurs in N
since fix 0 occurs in C[] . We therefore assume N is not in normal form and show that fix 0 occurs
to the left of the leftmost redex in N .

Suppose, for the sake of deriving a contradiction, that fix 0 occurs within, or to the right of,
the leftmost redex of N . Since a term beginning with fix 0 is not a redex, the leftmost redex of
N must begin with some symbol to the left of fix 0 , which is to the left of R when we write N as
C[R] . The proof proceeds by considering each possible form of redex.

Suppose the leftmost redex in N is (λx:σ.N1)N2 , with fix 0 and therefore R occurring to the
right of this λ . Since fix 0 must occur between λ and R , R cannot be (λx:σ. N1)N2 , and so a

19

redex of the form (λx:σ. N ′
1)N

′
2 must occur in M to the left of L . This contradicts the assumption

that L is the leftmost redex in M . The analogous case for fix is straightforward.
It remains to consider a redex SL′ with S some substitution and L′ → R′ in R . We assume

fix 0 and therefore R occur to the right of the first symbol of SL′ . Since fix 0 is not in L′ , by
hypothesis, and the rule is left-normal, all symbols to the right of fix 0 , including R if it occurs
within L′ , must be the result of substituting terms for variables in L′ . It follows that we have a
redex in M to the left of L , again a contradiction. This proves the lemma.

Theorem 4.10 Suppose R, β, lab+ is confluent and terminating, with R both left-linear and left-

normal. If M
R,β,fix
−−−−−→→ N and N is a normal form, then there is a R, β,fix -reduction from M

to N that contracts the leftmost redex at each step.

Proof If M
R,β,fix
−−−−−→→ N then, by Lemma 4.1 there exist labelings M# and N# of these terms

such that M# R,β,lab+

−−−−−−→→ N# . Since R, β, lab+ -reduction is confluent and terminating, we may
reduce M# to N# by reducing the leftmost redex at each step.

We show that the leftmost R, β, lab+ -reduction of M# to N# is also the leftmost R, β,fix -
reduction of M to N (when labels are removed). It is easy to see that this is the case if no term
in the reduction sequence has fix 0 to the left of the leftmost redex, since this is the only term that
would be an unlabeled redex without being a labeled one. Therefore, we assume that the final k
steps of the reduction have the form

M#
k ≡ C[L]→ C[R] ≡M#

k−1 →M#
k−2 → . . .→ N#,

where fix 0 occurs to the left of L in Mk . But by Lemma 4.9 and induction on k , fix 0 must also
be present in N# , which contradicts the fact that N is a R, β,fix -normal form. It follows from
Lemma 4.1 that by erasing labels we obtain a leftmost reduction from M to N .

A related theorem in [Klo80] shows that leftmost reduction is normalizing for the untyped
lambda calculus extended with any left-normal, linear and non-overlapping term rewriting system.
Our proof is simpler since we assume termination, and since type restrictions make fix the only
source of potential nontermination.

5 Confluence for lambda calculi with subtyping

5.1 Failures of confluence with subtyping

As noted in Section 2.4, β, η reduction fails to be confluent in the presence of subtyping. Specifically,
if σ <: τ and M ≡ λy:σ.(λx: τ .N) y , then

M →→ λx:σ.N

by β -reduction and
M →→ λx: τ .N

by η -reduction. If N is a closed normal form, then both λx:σ.N and λx: τ .N will be distinct
normal forms. Since these two distinct normal forms differ only in the type annotations of λ-
bound variables, one possible solution could be to add a reduction rule that allows us to change
the type-tags of variables.

Based on this example, we consider the following reduction:

(subtype) λx: τ .M → λx:σ. M if σ <: τ

20

Although (subtype) restores confluence for the counter-example considered above, confluence can
still fail. Specifically, let N be a normal-form term and consider any types σ1, σ2, τ such that
σ1 <: τ and σ2 <: τ and there is no type ρ such that ρ <: σ1 , ρ <: σ2 . Then, by (subtype)
λx: τ . N can be reduced to both λx:σ1. N and λx:σ2. N but there is no common term to which
the latter two terms can be reduced.

5.2 Reduction system for λ
→

<:

To understand our formulation of a confluent reduction system in the presence of subtyping, it is
useful to recall the connection between the equational theory of a calculus and its reduction system,
stated as Corollary 2.3. Specifically, we take equality as given by the proof system and formulate
a confluent reduction system so that convertibility will coincide with provable equality. From this
point of view, it is appropriate to look to provable equality for inspiration.

In the presence of subtyping, there are are interesting subtleties in the way one needs to think
about equality. In λ→ without subtyping, we include the context Γ and type σ in equations
Γ ⊲ M = N : σ simply to indicate the common typing of both terms and to facilitate writing
“well-typed” inference rules for axiomatizing the true equations. Since the λ→ type σ is uniquely
determined from Γ and M or N , the type does not have much to do with how M and N might
be equal. With subtyping, however, terms M and N may have many different types (under the
same assumptions about free variables) and so it is a priori possible for them to be equal at one
type but different at another type.

This dependence of equality on the context and type implies that reduction would also need to
be dependent on the context and type if there is to be the natural connection between equations
and reduction. With this in mind, we formulate reduction for λ→

<: in the form Γ ⊲ M σ−−→ N ,
with the dependence of the reduction on the context Γ and the type σ at which M and N are
being considered made explicit. It would be possible in our reduction system that Γ ⊲ M σ−−→ N
but that Γ ⊲ M 6τ−−→ N for a different type τ , i.e., redexes strongly depend on the type. Intuitively,
we take as basic redexes β, η and the rule (subtype) with the restriction that Γ ⊲ M σ−−→ N only
if both M and N have type σ in the context Γ. The individual reduction relations Γ ⊲ · σ−−→ ·
for each context Γ and type σ can then be shown to be confluent. In particular, suppose σ1 <: τ
and σ2 <: τ and there is no type ρ such that ρ <: σ1 , ρ <: σ2 , as above. If N has type δ , we
would have

λx: τ .N
σ1→δ
−−−−−→ λx:σ1. N

and
λx: τ .N

σ2→δ
−−−−−→ λx:σ2. N

but not λx: τ . N
σ1→δ
−−−−−→ λx:σ2. N , thus blocking the failure of confluence with the untyped

version of (subtype) above.
However, defining the reduction rules to depend on the type σ leads to a problem in applying

the reduction rules to subterms that are redexes, since it is not clear at what type to consider the
redexes. In more detail, consider a term N ≡ (· · ·M · · ·) with a subterm M , and suppose that we
wish to reduce N at type σ . The type σ of the whole term does not determine the type at which
reductions on the subterm M can be performed and one therefore needs to specify which typed
redexes can be simplified inside terms. Our solution is that we can consider M to be a redex of
type τ , if the whole term (· · ·M · · ·) can be given type σ assuming that the subterm M is of type
τ . Thus, the types at which we can apply the reductions for M are not all types of M but only
those with which we can give the enclosing term the indicated type. These ideas are formalized in
a proof system for Γ ⊲ M σ−−→ N defined below.

21

The reduction relation Γ ⊲ M σ−−→ N , where Γ is a context and σ a type, is given by the
following rules.

(β)
Γ ⊲ (λx:σ. M)N : τ

Γ ⊲ (λx:σ. M)N τ−−→ [N/x]M

(η)
Γ ⊲ M : σ→ τ x 6∈ FV (M)

Γ ⊲ (λx:σ.M x) σ→τ−−−−→ M

(<:)
Γ ⊲ λx: τ .M : σ→ δ σ <: τ, σ 6≡ τ

Γ ⊲ (λx: τ .M) σ→δ−−−−→ (λx:σ.M)

(app1)
Γ ⊲ M σ→τ−−−−→ N Γ ⊲ P : σ

Γ ⊲ M P τ−−→ N P

(app2)
Γ ⊲ M : σ→ τ Γ ⊲ P1

σ−−→ P2

Γ ⊲ M P1
τ−−→ M P2

(abs)
Γ, x:σ ⊲ M τ−−→ N σ1 <: σ

Γ ⊲ λx:σ.M
σ1→τ
−−−−−→ λx:σ. N

5.3 Confluence of reduction system

Confluence of λ→
<: is proved using confluence of β, η -reduction for untyped λ-calculus. In broad

outline, we consider the untyped term resulting from erasing the types of λ-bound variables in
λ→

<: terms and use the common reduct given by confluence of untyped λ-calculus to extract the
common reduct for the reduction in λ→

<: .
The type erasure, Erase(M), of a term, M , is defined by

Erase(x) = x

Erase(M N) = Erase(M)Erase(N)

Erase(λx:σ.M) = λx.Erase(M)

We can also reconstruct a typed λ→
<: term from the erasure of any λ→

<: term. We may identify such
erasures using the following inference system for assigning types to untyped terms.

(var) Γ ⊲ x : σ if x:σ ∈ Γ

(add var)
Γ ⊲ U : τ

Γ, x:σ ⊲ U : τ
if x /∈ Dom(Γ)

(→ Intro)
Γ, x:σ ⊲ U : τ

Γ ⊲ λx. U : σ→ τ

22

(→ Elim)
Γ ⊲ U : σ→ τ Γ ⊲ V : σ

Γ ⊲ U V : τ

(subsump)
Γ ⊲ U : σ Σ ⊢ σ <: τ

Γ ⊲ U : τ

With these definitions, we can now state and prove the various lemmas needed to establish the
confluence of the reduction system for λ→

<: .
Our first lemma shows that the type-erasure of a term of λ→

<: can be given the same type in
the type system for untyped λ-terms.

Lemma 5.1 If Γ ⊲ M : σ then Γ ⊲ Erase(M) : σ .

Proof By induction on the proof of Γ ⊲ M : σ .

The next lemma states that the typed reduction rules can be mimicked as β, η -reductions on
the untyped terms resulting from their type-erasure.

Lemma 5.2 If Γ ⊲ M σ−−→ N then Erase(M)
β,η
−−−→→ Erase(N).

Proof By induction on the proof of Γ ⊲ M σ−−→ N .

We next establish the converse, i.e., that β, η -reductions on untyped terms can be mimicked
as typed reductions on the corresponding terms. To prove this, we need two technical propositions
stating some obvious properties of substitutions.

Proposition 5.3 If Γ, x:σ ⊲ M : τ and Γ ⊲ N : σ then Γ ⊲ [N/x]M : τ .

Proof By induction on the proof of Γ, x:σ ⊲ M : τ .

Proposition 5.4 Erase([N/x]M) ≡ [Erase(N)/x]Erase(M).

Proof By induction on the structure of M .

Lemma 5.5 If Γ ⊲ M : σ and Erase(M)
β,η
−−−→ U then ∃N such that Γ ⊲ N : σ , Γ ⊲ M σ−−→

N , and Erase(N) ≡ U .

Proof By induction on the structure of M .

Case M ≡ x: Vacuously true, since Erase(M) = x and x
β,η
−−−→/ U , for any term U .

Case M ≡M1 M2 : Since Γ ⊲ M : σ , we have that

Γ ⊲ M1 : τ → ρ where ρ <: σ

Γ ⊲ M2 : τ (1)

Hence τ → ρ <: τ → σ and by (subsump),

Γ ⊲ M1 : τ → σ (2)

Suppose that Erase(M)
β,η
−−−→ U . Since Erase(M) = Erase(M1)Erase(M2), the reduction

to U could be because Erase(M) itself is a β -redex, or we perform a β, η -reduction inside
Erase(M1) or Erase(M2). We consider each of these cases separately.

23

Case I: Suppose that Erase(M1) ≡ λx. V and U ≡ [Erase(M2)/x]V . Since Erase(M1) ≡
λx. V , it follows that M1 is of the form λx: τ ′.M ′

1 with Erase(M ′
1) = V . From (2), it

follows that

Γ, x: τ ′ ⊲ M ′
1 : σ (3)

with τ <: τ ′ . Using (1) with τ <: τ ′ , we get that

Γ ⊲ M2 : τ ′ (4)

Take N to be the term [M2/x]M ′
1 . From judgments (3), (4), using Proposition 5.3,

it follows that Γ ⊲ N : σ . Since M ≡ (λx: τ ′. M ′
1)M2 , we can use (β) to get that

Γ ⊲ M σ−−→ N . Finally,

Erase(N) ≡ Erase([M2/x]M ′
1)

≡ [Erase(M2)/x]Erase(M ′
1)

by Proposition 5.4, and we thus get that Erase(N) ≡ U .

Case II: Suppose that Erase(M1)
β,η
−−−→ V ′

1 and U ≡ V ′
1 Erase(M2). By (2), we can use

induction hypothesis on M1 to get that there is a term N ′ such that Γ ⊲ N ′ : τ → σ ,
Γ ⊲ M1

τ→σ−−−−→ N ′ and Erase(N ′) ≡ V ′
1 .

Take N ≡ N ′ M2 . From (1), we get that Γ ⊲ N : σ . Using (app1), we get that
Γ ⊲ M σ−−→ N . Finally,

Erase(N) ≡ Erase(N ′)Erase(M2)
≡ V ′

1 Erase(M2)
≡ U

Case III: The only possibility remaining is that Erase(M2)
β,η
−−−→ V ′

2 and
U ≡ Erase(M1)V ′

2 . This case is dealt similarly as Case II.

Case M ≡ λx:σ1.M1 : Since Γ ⊲ M : σ , we have that σ ≡ σ2→ τ , and

Γ, x:σ1 ⊲ M1 : τ ′ where σ2 <: σ1 and τ ′ <: τ, (5)

By (subsump),

Γ, x:σ1 ⊲ M1 : τ (6)

Suppose that Erase(M)
β,η
−−−→ U . Since Erase(M) = λx.Erase(M1), the reduction to

U could be because Erase(M) itself is an η -redex, or we perform a β, η -reduction inside
Erase(M1). We consider each of these cases separately.

Case I: Suppose Erase(M1) ≡ V x for some term V ,

then Erase(M) ≡ λx. V x and Erase(M)
η
−−→ V , i.e., U ≡ V .

Since Erase(M1) ≡ V x , we have that M1 ≡M ′
1 x where Erase(M ′

1) ≡ V . By judgment
(6), Γ, x:σ1 ⊲ M ′

1 x : τ , i.e., Γ ⊲ M ′
1 : σ′

1→ τ ′ where
σ1 <: σ′

1 and τ ′ <: τ . By (5), σ2 <: σ1 , hence Γ ⊲ M ′
1 : σ2→ τ , i.e.,

Γ ⊲ M ′
1 : σ .

24

Take N ≡M ′
1 , we have that Γ ⊲ N : σ .

Since Γ ⊲ M : σ where σ ≡ σ2→ τ and M ≡ λx:σ1.M
′
1 x , we have the type judgment

Γ ⊲ λx:σ1.M
′
1 x : σ2→ τ .

By (<:), and (5), Γ ⊲ λx:σ1.M
′
1 x

σ2→τ
−−−−−→ λx:σ2. M

′
1 x .

Hence, by (η), Γ ⊲ λx:σ2. M
′
1 x

σ2→τ
−−−−−→ M ′

1 , i.e., Γ ⊲ M σ−−→ N .
Finally,

Erase(N) ≡ Erase(M ′
1)

≡ V
≡ U

Case II: Suppose that Erase(M1)
β,η
−−−→ V . We have U ≡ λx. V . By (6), we can use the

induction hypothesis on M1 to get that there is a term N1 such that Γ, x:σ1 ⊲ N1 : τ ,
Γ, x:σ1 ⊲ M1

τ−−→ N1 , and Erase(N1) ≡ V .

Take N ≡ λx:σ1. N1 .
Using (abs) on Γ, x:σ1 ⊲ N1 : τ , we get Γ ⊲ λx:σ1. N1 : σ1→ τ .
Since σ2 <: σ1 , by (<:), we have that Γ ⊲ λx:σ1. N1 : σ2→ τ , i.e.,
Γ ⊲ N : σ .
Now, using (abs) , we get that Γ ⊲ λx:σ1.M1

σ2→τ
−−−−−→ λx:σ1. N1 , i.e., Γ ⊲ M σ−−→ N .

Finally,
Erase(N) ≡ λx.Erase(N1)

≡ λx. V
≡ U

Corollary 5.6 If Γ ⊲ M : σ and Erase(M)
β,η
−−−→→ U then ∃N such that Γ ⊲ N : σ , Γ ⊲ M σ−−→→

N , and Erase(N) ≡ U .

Proof By induction on the number of reduction steps of Erase(M)
β,η
−−−→→ U and Lemma 5.5.

Lemma 5.7 If U is a β, η−normal form then

U ≡ λx1. . . . λxn. y V1 . . . Vk

where n ≥ 0, k ≥ 0, y is a variable, and V1, . . . , Vk are β, η−normal forms.

Proof By induction on the structure of U .

Lemma 5.8 If U is an untyped β, η−normal form and Γ ⊲ U : σ , then there exists a term N
such that Γ ⊲ N : σ, Erase(N) ≡ U , and for any term P such that Γ ⊲ P : σ
and Erase(P) ≡ U , we have that Γ ⊲ P σ−−→→ N .

Proof Let U be a β, η -normal form. By Lemma 5.7,

U ≡ λx1. . . . λxn. y V1 . . . Vk, n ≥ 0, k ≥ 0

We proceed by induction on the length of U . Suppose Γ ⊲ U : σ , then

σ ≡ σ1→ σ2→ · · · → σn→ ρ (7)

Γ′ ⊲ y V1 . . . Vk : ρ where Γ′ ≡ Γ, xi:σi, i = 1, . . . , n (8)

25

By (8), we have

y: ρ1→ · · · → ρk→ ρ′ ∈ Γ′ (9)

Γ′ ⊲ Vi : ρ′i, where ρ′i <: ρi, i = 1, . . . , k (10)

ρ′ <: ρ (11)

Hence, Γ′ ⊲ Vi : ρi .
By induction hypothesis applied to the shorter terms Vi , there exist terms
Γ′ ⊲ Ni : ρi with the stated property.
Take N ≡ λx1:σ1. . . . λxn:σn. y N1 . . . Nk .
Since Γ′ ⊲ Ni : ρi and y: ρ1→ · · · → ρk→ ρ′ ∈ Γ′ , using (→ Elim) k times, we get that

Γ′ ⊲ y N1 . . . Nk : ρ′,

and by (11),
Γ′ ⊲ y N1 . . . Nk : ρ.

Using (→ Intro) n times, we get

Γ ⊲ λx1:σ1. . . . λxn:σn. y N1 . . . Nk : σ1→ σ2→ · · · → σn→ ρ,

i.e.,
Γ ⊲ N : σ.

Clearly, Erase(N) ≡ U .
Now, suppose Γ ⊲ P : σ and Erase(P) ≡ U .
Then, P ≡ λx1:σ

′
1. . . . λxn:σ′

n. y P1 . . . Pk with Erase(Pi) ≡ Vi, i = 1, . . . , k .
From Γ ⊲ P : σ , we have Γ, x1:σ

′
1, . . . , xn:σ′

n ⊲ y P1 . . . Pk : τ ′ and
σ′

1→ · · · → σ′
n→ τ ′ <: σ , i.e., σi <: σ′

i for i = 1, . . . , n and τ ′ <: ρ .
Hence, Γ, x1:σ1, . . . , xn:σn ⊲ y P1 . . . Pk : ρ .
Since y: ρ1→ · · · → ρk→ ρ′ ∈ Γ′ and Γ′ ⊲ Pi : ρ′′i with ρ′′i <: ρi , we have Γ′ ⊲ Pi : ρi .

By induction hypothesis, Γ′ ⊲ Pi
ρi

−−→→ Ni . By repeated use of rule (app2) and the fact that

Γ′ ⊲ y : ρ1→ · · · → ρk→ ρ , we have Γ′ ⊲ y P1 . . . Pk
ρ
−→→ y N1 . . . Nk .

By repeated use of rule (abs) , we get

Γ ⊲ λx1:σ1. . . . λxn:σn. y P1 . . . Pk

σ1→···→σn→ρ
−−−−−−−−−−→→ λx1:σ1. . . . λxn:σn. y N1 . . . Nk (12)

Now, since σn <: σ′
n , by (<:)

Γ, x1:σ1, . . . , xn−1:σn−1 ⊲ λxn:σ′

n. y P1 . . . Pk

σn→ρ
−−−−→ λxn:σn. y P1 . . . Pk

By repeating this argument, we get

Γ ⊲ λx1:σ
′

1. . . . λxn:σ′

n. y P1 . . . Pk

σ1→···→σn→ρ
−−−−−−−−−−→ λx1:σ1. . . . λxn:σn. y P1 . . . Pk (13)

Using the reduction (13) followed by (12), we get that

Γ ⊲ P σ−−→→ N

26

M

N2N1

σ

P ′
2P ′

1

Erase(M)

Untyped

Erase(N1) Erase(N2)

σ σ

σ

β, η

β, η

β, η

β, η

β, η

P

P1 P2 U β, η − normal form

U ′

σ

σσ

σ

λ
→→

<:

Figure 2: Proof of Theorem 5.10

Lemma 5.9 Let U be any untyped term such that Γ ⊲ U : σ for some context Γ and type σ .
Then, U is strongly-normalizing under β, η -reduction.

Proof By Corollary 22 of [Mit91], it follows that U is the erasure of a simply-typed λ-term. Since
simply-typed λ-calculus is strongly normalizing under β, η -reduction, the result follows.

Theorem 5.10 Suppose that for Γ ⊲ M : σ , both Γ ⊲ M σ−−→→ N1 and Γ ⊲ M σ−−→→ N2 , then
there is a term Γ ⊲ P : σ such that Γ ⊲ N1

σ−−→→ P and Γ ⊲ N2
σ−−→→ P .

Proof Suppose Γ ⊲ M σ−−→→ N1 , Γ ⊲ M σ−−→→ N2 .

By Lemmas 5.2 and 5.1, we have Γ ⊲ Erase(M)
β,η
−−−→→ Erase(N1),

Γ ⊲ Erase(M)
β,η
−−−→→ Erase(N2), and Γ ⊲ Erase(N1) : σ , Γ ⊲ Erase(N2) : σ .

By confluence of β, η -reduction for untyped λ−calculus, there exists a term U ′ such that both

Erase(N1)
β,η
−−−→→ U ′ and Erase(N2)

β,η
−−−→→ U ′ .

By Corollary 5.6, there exist P ′
1 , P ′

2 such that Γ ⊲ P ′
1 : σ , Γ ⊲ P ′

2 : σ , Γ ⊲ N1
σ−−→→ P ′

1 ,
Γ ⊲ N2

σ−−→→ P ′
2 , and Erase(P ′

1) ≡ U ′ , Erase(P ′
2) ≡ U ′ .

Thus, by Lemma 5.1 Γ ⊲ U ′ : σ . By Lemma 5.9, there exists a term U of β, η−normal form such

that Γ ⊲ U : σ and U ′
β,η
−−−→→ U .

By Corollary 5.6, there exists P1 , P2 such that Γ ⊲ P1 : σ , Γ ⊲ P2 : σ , Γ ⊲ P ′
1

σ−−→→ P1 ,
Γ ⊲ P ′

2
σ−−→→ P2 , and Erase(P1) ≡ U , Erase(P2) ≡ U .

Now, by Lemma 5.8 there exists a term P such that Γ ⊲ P : σ , and Γ ⊲ P1
σ−−→→ P ,

Γ ⊲ P2
σ−−→→ P , i.e., there exists P such that Γ ⊲ N1

σ−−→→ P , Γ ⊲ N2
σ−−→→ P .

This can be illustrated as in Figure 2.

27

5.4 Reduction with subtyping and recursion

In the last part of this paper, we consider reduction for λ→,fix
<: , the language obtained by adding

fixed-point operators to λ→
<: . One reason this system deserves separate consideration is that our

confluence proof for λ→
<: relies heavily on the strong-normalization property. Since strong normal-

ization fails for λ→,fix
<: , it is therefore not easy to see, a priori, whether reduction for λ→,fix

<: is likely
to be confluent.

We prove confluence of the reduction system for λ→,fix
<: by using the corresponding calculus

λ→,lab
<: with all fixed-point operators labeled. The reduction relation Γ ⊲ M σ−−→lab N on λ→,lab

<:

is the same as reduction for λ→
<: , plus the expected rule for labeled fixed points,

(fix lab) Γ ⊲ fixn+1
σ

τ−−→lab λf :σ→ σ. f (fixn
σ f) if Γ ⊲ fixn+1

σ : τ
It is relatively straightforward to verify the lifting and projection properties of labeling for

λ→,fix
<: . These may be stated as follows, writing L ∈ lab(M) if L is a labeled term with ♮(L) = M .

Lemma 5.11 Suppose that Γ ⊲ M σ−−→→ N . Then there exists a natural number k such that if
M# ∈ lab(M) with each label in M at least k then Γ ⊲ M# σ−−→→lab N# .

Proof If Γ ⊲ M σ−−→→ N then there exist terms M1, . . . ,Mk, k ≥ 0 such that M ≡ M0 ,
Γ ⊲ Mi

σ−−→ Mi+1 , and Mk ≡ N . Proof by induction on the length of the reduction sequence.

Lemma 5.12 If Γ ⊲ M# σ−−→lab N# then Γ ⊲ M σ−−→ N , where M# ∈ lab(M), N# ∈ lab(N).

Proof By induction on the proof of Γ ⊲ M# σ−−→lab N# .

Corollary 5.13 Confluence of σ−−→→lab implies confluence of σ−−→→ .

5.5 Confluence proof using labeled reduction

As shown in the previous section, confluence of the reduction system for λ→,fix
<: follows from the

confluence of labeled reduction. In this section we establish the confluence of the reduction system
for λ→,lab

<: , thereby proving confluence for λ-calculus with subtyping and fixed points.
Just as in Section 5.3, we prove the confluence of labeled reduction by considering untyped

λ-terms and using confluence properties of β, η -reduction on them. However, there is one main
step in extending the ideas from the proof for λ→

<: to that for λ→,lab
<: . In λ→

<: the only additional
basic reduction rule besides β and η was (<:), which could be easily mimicked in the untyped

λ-calculus (as a 0-step reduction!). However, in λ→,lab
<: , we have an additional set of reduction

rules, namely those of labeled fixed points, that need to be suitably mimicked as reduction on
untyped terms. One possibility is to introduce labeled fixed-point constants in the target untyped
calculus and include their reduction rules in the untyped calculus. However, this introduces some
extraneous complication, since we would have to establish confluence of untyped lambda calculus
with labeled fixed-point reduction. A simpler solution is to take the target untyped λ-calculus
with only β, η -reductions and to mimic labeled fixed-point reductions through the definition of the
erasure function. More specifically, we translate labeled fixed points by performing their bounded
number of unwindings completely and erasing the type-annotations of the λ-bound variables from
the resulting term. This reduces all labeled fixed points to terms involving fix 0

σ , which we include
as constants in the untyped λ-calculus. The inclusion of these constants does not interfere with
the confluence of the system since there are no associated reduction rules with these constants, and
thus the reduction system is still only β, η on untyped terms.

28

5.5.1 Type system for untyped terms

We consider untyped terms which may include constants of the form fix 0
σ . Thus, the typing rules

for untyped terms are those given in Section 5.3 together with the following additional axiom.

(fix) φ ⊲ fix 0
σ : (σ→ σ)→ σ

5.5.2 Type erasure

The type erasure of a term M , written Erase(M), is defined as follows.

Erase(x) = x

Erase(fix 0
σ) = fix 0

σ

Erase(fixn+1
σ) = λf. f ((Erase(fixn

σ)) f)

Erase(M N) = Erase(M)Erase(N)

Erase(λx:σ. M) = λx.Erase(M)

5.5.3 Proof of confluence

Lemma 5.14 If Γ ⊲ M : σ then Γ ⊲ Erase(M) : σ .

Proof By induction on the proof of Γ ⊲ M : σ .

Lemma 5.15 If Γ ⊲ M σ−−→lab N then Erase(M)
β,η
−−−→→ Erase(N)

Proof By induction on the proof of Γ ⊲ M σ−−→lab N .

Lemma 5.16 If Γ ⊲ M : σ and Erase(M)
β,η
−−−→ U then ∃N such that Γ ⊲ N : σ , Γ ⊲ M σ−−→→lab

N , and Erase(N) ≡ U .

Proof By induction on the structure of M . We need to prove for the case where M ≡ fixn
τ ; for

the other cases the proof is the same as that of Lemma 5.5.

Case M ≡ fixn
τ : We have that Γ ⊲ fixn

τ : σ where (τ → τ)→ τ <: σ .
Proof by induction on n .

n = 0: Vacuously true, since M ≡ fix 0
τ and fix 0

τ

β,η
−−−→/ U for any term U .

n = k + 1: Suppose Γ ⊲ fixk+1
τ : σ and Erase(fixk+1

τ)
β,η
−−−→ U .

By definition of Erase , we have λf. f ((Erase(fixk
τ)) f)

β,η
−−−→ U .

We proceed by examining possible reductions.

Case I: U ≡ λf. f (V f) and Erase(fix k
τ)

β,η
−−−→ V .

By induction hypothesis, ∃Nk such that

Γ ⊲ Nk : (τ → τ)→ τ, since Γ ⊲ fixk
τ : (τ → τ)→ τ,

Γ ⊲ fix k
τ

(τ→τ)→τ
−−−−−−−→→lab Nk, (14)

Erase(Nk) = V . (15)

29

Take
Nk+1 = λf : τ → τ . f (Nk f)

Since Γ ⊲ Nk+1 : (τ → τ)→ τ and (τ → τ)→ τ <: σ , we have
Γ ⊲ Nk+1 : σ
We also have, since (τ → τ)→ τ <: σ ,

σ ≡ (σ1→ σ2)→ σ3, where σ2 <: τ , τ <: σ1 , and τ <: σ3

By (fix lab), Γ ⊲ fixk+1
τ

σ−−→lab λf : τ → τ . f (fix k
τ f), i.e., we need to prove that

Γ ⊲ λf : τ → τ . f (fix k
τ f) σ−−→→lab λf : τ → τ . f (Nk f)

From (14), we can get that

Γ, f : τ → τ ⊲ fixk
τ

(τ→τ)→τ
−−−−−−−→→lab Nk, (16)

Using (app1) on (16) and Γ, f : τ → τ ⊲ f : τ → τ , we get

Γ, f : τ → τ ⊲ (fixk
τ f) τ−→lab Nk f, (17)

Since τ <: σ3 , we have Γ, f : τ → τ ⊲ f : τ → σ3 ; applying (app2) on this judgment
and (17), we have

Γ, f : τ → τ ⊲ f (fixk
τ f)

σ3−−→→lab f (Nk f), (18)

Now, since σ1→ σ2 <: τ → τ , using (abs) on (18), we get

Γ ⊲ λf : τ → τ . f (fix k
τ f)

(σ1→σ2)→σ3

−−−−−−−−−→→lab λf : τ → τ . f (Nk f),

Thus,

Γ ⊲ λf : τ → τ . f (fix k
τ f) σ−→→lab λf : τ → τ . f (Nk f), i.e.,

Γ ⊲ fixk+1
τ

σ−→→lab Nk+1

From (15), we have

Erase(Nk+1) = λf. f ((Erase(Nk)) f)

= U

Case II: If k ≥ 1, then by the definition of Erase , we have

λf. f ((λg. g ((Erase(fix k−1
τ)) g)) f)

β,η
−−−→ U

Thus, U ≡ λf. f (f ((Erase(fixk−1
τ)) f)).

Take
Nk+1 = λf : τ → τ . f (f (fix k−1

τ f))

Then, Γ ⊲ Nk+1 : (τ → τ)→ τ ; since (τ → τ)→ τ <: σ , we have that
Γ ⊲ Nk+1 : σ .

30

Now, since Γ ⊲ fix k+1
τ : σ we have that

Γ ⊲ fixk+1
τ

σ−−→lab λf : τ → τ . f (fix k
τ f)

σ−−→lab λf : τ → τ . f ((λg: τ → τ . g (fix k−1
τ g)) f)

σ−−→lab λf : τ → τ . f (f (fixk−1
τ f)) = Nk+1

Thus, Γ ⊲ fixk+1
τ

σ−−→→lab Nk+1 .
We also have that

Erase(Nk+1) = λf. f (f ((Erase(fix k−1
τ)) f))

= U

Corollary 5.17 If Γ ⊲ M : σ and Erase(M)
β,η
−−−→→ U then ∃N such that Γ ⊲ N : σ , Γ ⊲

M σ−−→→lab N , and Erase(N) ≡ U .

Proof By induction on the number of reduction steps of Erase(M)
β,η
−−−→→ U and Lemma 5.16.

Lemma 5.18 If U is a β, η−normal form then

U ≡ λx1. . . . λxn. h V1 . . . Vk

where n ≥ 0, k ≥ 0, h is a variable or fix 0
σ , and V1, . . . , Vk are β, η−normal forms.

Proof By induction on the structure of U .

Lemma 5.19 If U is a β, η−normal form and Γ ⊲ U : σ , then there exists a term N such that
Γ ⊲ N : σ , Erase(N) ≡ U , and for any term P such that Γ ⊲ P : σ and Erase(P) ≡ U , we have
that Γ ⊲ P σ−−→→lab N .

Proof Analogous to Lemma 5.8. The only significant extra case to consider is when U looks like
λx1. . . . λxn−1. λxn. xn(fix 0

τ xn), so that P could take the form λx1:σ1. . . . λxn−1:σn−1.fix 1
τ . But

we have Γ ⊲ P σ−−→lab P ′ , where the term P ′ ≡ λx1:σ1. . . . λxn−1:σn−1. λxn: τ → τ . xn(fix 0
τ xn)

will reduce to N by the earlier argument.

Theorem 5.20 Suppose that Γ ⊲ M : σ and Γ ⊲ M σ−−→→lab N1,Γ ⊲ M σ−−→→lab N2 , then there
is a term Γ ⊲ P : σ such that Γ ⊲ N1

σ−−→→lab P and Γ ⊲ N2
σ−−→→lab P .

Proof Same as proof of Theorem 5.10.

6 Conclusion

Using a proof method for extensions of typed lambda calculus with fixed-point operators that is
based on labeled reduction, we have proved a series of results. For typed lambda calculus extended
with fixed-point operators and additional operations satisfying certain conditions, we have proved
confluence and completeness of leftmost reduction, as corollaries of the confluence and termination
of labeled reduction. While these two results might have been considered “folk theorems,” we

31

were unable to find any “folk proofs,” either in the literature or by word-of-mouth (except for our
prior paper on the topic, [HM90]). For typed lambda calculus with subtyping, we observe that
confluence fails for β, η -reduction in the presence of subtyping. This problem is repaired by adding
an intuitive but unusual reduction system, proved confluent using termination of β, η -reduction for
typed lambda calculus. We then use the labeling technique to extend this confluence proof to typed
lambda calculus with subtyping and fixed-point operators. Further discussion of types, subtyping
and reduction may be found in [Hoa95]. For a more recent, modular approach to confluence proofs
for systems with fixed-point operators and expansive extensional rules, see [DCK94].

Acknowledgments. Thanks to Andrew Gordon and Andrew Pitts for inviting us to submit this
paper and their encouragement while the paper was in preparation. The authors were sponsored,
in part, by NSF Grants CCR-9303099-001, an NSF Presidential Young Investigator Award to J.
Mitchell and an NSF Graduate Fellowship to B. Howard.

References

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam,
1984. Second edition.

[BT88] V. Breazu-Tannen. Combining algebra and higher-order types. In Proc. IEEE Symp. on Logic in
Computer Science, pages 82–90, 1988.

[BTG89] V. Breazu-Tannen and J.H. Gallier. Polymorphic rewriting conserves algebraic strong normal-
ization and confluence. In 16th Int’l Colloq. on Automata, Languages and Programming, pages
137–159, Berlin, 1989. Springer LNCS 372. A revised version appears in Information and Compu-
tation, 114:1–29, 1994.

[DCK94] R. Di Cosmo and D. Kesner. Combining first order algebraic rewriting systems, recursion and
extensional lambda calculi. In 21st Int’l Colloq. on Automata, Languages and Programming, pages
462–472, Berlin, 1994. Springer LNCS 820.

[ES90] M. Ellis and B. Stroustrop. The Annotated C++ Reference Manual. Addison-Wesley, 1990.

[Gun92] C.A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press,
Cambridge, MA, 1992.

[HM90] B.T. Howard and J.C. Mitchell. Operational and axiomatic semantics of PCF. In ACM Conference
on LISP and Functional Programming, pages 298–306, 1990.

[Hoa95] M. Hoang. Type Inference and Program Evaluation in the Presence of Subtyping. PhD thesis,
Stanford University, 1995.

[Hor84] E. Horowitz. Fundamentals of Programming Languages. Computer Science Press, 1984.

[How92] B.T. Howard. Fixed points and extensionality in typed functional programming languages. PhD
thesis, Stanford University, 1992.

[Hyl76] J.M.E. Hyland. A syntactic characterization of the equality in some models of the lambda calculus.
J. London Math. Society, 2(12):361–370, 1976.

[Klo80] J.W. Klop. Combinatory Reduction Systems. PhD thesis, University of Utrecht, 1980. Published
as Mathematical Center Tract 129.

[Lév75] J.-J. Lévy. An algebraic interpretation of the λ-β -k -calculus and a labeled λ-calculus. In C. Böhm,
editor, Proc. Lambda calculus and computer science theory, pages 147–165. Springer LNCS 37, 1975.

[Mey92] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.

32

[Mit91] J.C. Mitchell. Type inference with simple subtypes. J. Functional Programming, 1(3):245–286,
1991.

[Mit96] J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[Ned73] R.P. Nederpelt. Strong Normalization in a typed lambda calculus with lambda structured types.
PhD thesis, Technological Univ. Eindhoven, 1973.

[Toy87] Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. J. Assoc.
Computing Machinery, 34:128–143, 1987.

[vD80] D.T. van Dalen. The language theory of Automath. PhD thesis, Technological Univ. Eindhoven,
1980.

[Wad76] C. Wadsworth. The relation between computational and denotational properties for Scott’s D∞

models. Siam J. Comput., 5(3):488–521, 1976.

