
Operational and Axiomatic Semantics of PCF

Brian T. Howard∗

John C. Mitchell†

Department of Computer Science

Stanford University

{bhoward,jcm}@cs.stanford.edu

Abstract

PCF, as considered in this paper, is a lazy typed lambda
calculus with functions, pairing, fixed-point operators and
arbitrary algebraic data types. The natural equational ax-
ioms for PCF include η-equivalence and the so-called “sur-
jective pairing” axiom for pairs. However, the reduction
system pcf η,sp defined by directing each equational axiom
is not confluent, for virtually any choice of algebraic data
types. Moreover, neither η-reduction nor surjective pairing
seems to have a counterpart in ordinary execution. There-
fore, we consider a smaller reduction system pcf without η-
reduction or surjective pairing. The system pcf is confluent
when combined with any linear, confluent algebraic rewrite
rules. The system is also computationally adequate, in the
sense that whenever a closed term of “observable” type has
a pcf η,sp normal form, this is also the unique pcf normal
form. Moreover, the equational axioms for PCF, including
(η) and surjective pairing, are sound for pcf observational
equivalence. These results suggest that if we take the equa-
tional axioms as defining the language, the smaller reduction
system gives an appropriate operational semantics.

1 Introduction

Most systems of lambda calculus have three parts: an equa-
tional proof system, a set of reduction rules, and a model
theory. These correspond to the standard programming lan-
guage notions of axiomatic, operational, and denotational
semantics. To a first approximation, the connections be-
tween axiomatic and operational semantics are straightfor-
ward in basic systems such as the simply-typed lambda cal-
culus. The reduction rules may be derived by orienting each
equational axiom in a computationally reasonable way and
the resulting system is confluent. As a result, the reduc-
tion rules serve simultaneously as a useful characterization
of equational provablilty and as a natural model of exe-
cution. When we add recursion to simply-typed lambda

∗This material is based upon work supported under a National
Science Foundation Graduate Fellowship

†Supported in part by an NSF PYI Award, matching funds from
Digital Equipment Corporation, the Powell Foundation, and Xerox
Corporation, and NSF grant CCR-8814921.

calculus with cartesian products, this straightforward cor-
respondence breaks down. Since confluence fails [Nes89],
the reduction rules do not give a good picture of equational
provability. Moreover, upon examining the reduction rules
more carefully, many investigators have come to the conclu-
sion that neither η-reduction nor surjective pairing is com-
putationally compelling. In fact, it seems to be a common
view that η-reduction and surjective pairing do not have any
“computational content.” Therefore, for both technical and
intuitive reasons, we are led to define evaluation without
these reduction rules.

In this paper, we study a simply-typed lambda calculus
with functions, pairing, fixed-point operators and arbitrary
algebraic data types. We will refer to this language as PCF,
since it is based on the calculus considered in Plotkin’s sem-
inal paper [Plo77], with pairing and algebraic data types
added.1 If we include algebraic data types of natural num-
bers and booleans, as in [Plo77, Sco69], then it is easy to
program any partial recursive function on the natural num-
bers. With algebraic data types of trees, lists, stacks, and so
on, we may write common functional programs in the style
of Miranda or Lazy ML, for example [Tur85].

While most sequential implementations of lazy languages
are based on a deterministic (typically “left-most”) evalua-
tion order, there are several reasons to study arbitrary order.
One motivation is parallel execution. If the result of evalua-
tion does not rely on evaluation order, then many subexpres-
sions may safely be evaluated in parallel (see [Hen80, Pey87],
for example, for related discussion). Another reason to con-
sider arbitrary evaluation order is to identify desirable prop-
erties of a particular implementation. For example, if a set
of reduction (or execution) rules is confluent, then the result
of nondeterministic execution is well-defined and we may re-
gard this as the “ideal” implementation. We may then show
that a particular evaluation order is satisfactory by com-
parison with nondeterministic evaluation. While we do not
analyze any deterministic evaluation strategies in this pa-
per, our study of nondeterministic reduction sets the stage
for such later study.

For any variant of PCF with equationally-axiomatized
algebraic data types, there is a traditional and accepted
equational proof system. The axioms of this proof system
include η-equivalence (extensionality) for functions

(η)eq λx:σ. Mx = M, x not free in M,

1The language itself seems attributable to Scott, since the basic
ideas are presented in the manuscript [Sco69] and Plotkin’s name
for the calculus is clearly derived from Scott’s LCF (Logic for Com-
putable Functions).

and the surjective pairing axiom

(sp)eq 〈π1P, π2P 〉 = P,

where π1 and π2 are the first and second projection func-
tions. These seem essential for proving common facts about
functions and pairs. For example, both are needed to estab-
lish that currying and uncurrying are inverses (or, equiva-
lently, that types σ→(τ→ρ) and (σ×τ)→ρ are isomorphic).
However, neither seems to be used in standard implementa-
tions. If we direct these equational axioms from left to right,
we obtain evaluation rules, (η) and (sp), that could be used
in program execution but which typically do not have any
counterpart in practical implementation. One reason surjec-
tive pairing is difficult to implement is that it is non-linear :
the meta-variable P occurs twice on the left-hand side. In
order to apply the reduction, we must therefore test two
potentially large subexpressions for syntactic equality. This
seems inefficient, in general, and it follows from our results
that such a test is unnecessary for execution of complete
programs.

In addition to the folkloric view that (η) and (sp) are
not needed in computation, which we justify in Corollary
6.6, there are technical problems with these rules. While
pure typed lambda calculus with these rules but without
fixed-point operators is confluent [Pot81], the situation is
substantially different in the presence of recursion. Even
without any algebraic data types, (sp) and recursion cause
confluence to fail. This may be demonstrated by adapting
Klop’s well-known counterexample2 to confluence in the un-
typed lambda calculus with surjective pairing [Nes89]. Sim-
ilar reasoning also shows that in a language with recursion,
confluence may fail when confluent but non-linear algebraic
rules are added. Although not as immediately problematic,
(η) also interferes with confluence of algebraic rules. For ex-
ample, the simple rewrite rule f(x)→ a, combined with (η),
is not confluent. Therefore, considering only the technical
property of confluence, both (η) and (sp) seem problematic.

Our first theorem is that without (η) and (sp), PCF re-
duction is confluent over any algebraic data types, provided
that the algebraic rewrite rules are all linear, and conflu-
ent when considered apart from PCF. This result, described
in Section 5, extends a similar theorem of [BT88] to pairing
and fixed-point operators. Our proof technique combines la-
belled reduction [Bar84] with the method of [BT88], which
relies on strong normalization. In combining lambda cal-
culus with additional reduction rules, our theorem is also
similar in spirit to the delta reduction theorem of Mitschke
(see [Bar84]), although our result neither subsumes nor is
subsumed by his. Given the apparent suitability of PCF re-
duction without (η) and (sp), we proceed to study connec-
tions between this limited reduction system and the natural
equational axioms.

Since we have dropped two equational rules, it is not im-
mediately clear whether the reduction system is computa-
tionally adequate. In other words, do we still have “enough”
evaluation rules? While there are provably equal expres-
sions, such as λx:nat .fx and f , which do not reduce to a
common form, we show that this is not the case for “full pro-
grams.” In more detail, the programs we execute in practice
are closed expressions of basic types such as nat , bool and
list , or perhaps products of basic types. We show that for

2A slick presentation is given in [Bar84]. However, the exact coun-
terexample given there cannot be typed. Instead, one must consider
a version of the counterexample given in Klop’s thesis [Klo80].

any closed expression M of “observable” type, and possible
result N of complete execution, M reduces to N using all re-
duction rules iff M reduces to N without (η) and (sp). Thus
we have not lost anything by dropping these rules. More-
over, and perhaps more importantly, such expressions M
and N are provably equal, possibly using (η)eq and (sp)eq ,
iff M reduces to N by reduction without (η) and (sp). In
standard computational terms, this demonstrates the com-
putational adequacy of our operational semantics with re-
spect to the axiomatic semantics (c.f. [HWWW85]). The
first of these theorems follows from a postponement prop-
erty of (η) and (sp), while the second uses a refinement of
the postponement proof. Typing is essential here, since (sp)
postponement fails for untyped terms.3

Our final connection between axiomatic and operational
semantics is soundness of the axioms with respect to com-
putation. In general terms, if we begin with an intuitively
appealing axiomatic semantics, then it seems fair to base
evaluation on any equational principles which follow from
the axioms. However, once we have selected an operational
semantics, we must also ask whether this semantics justifies
the equational prinicples we began with. Put simply, are
the equational axioms sound statements about the result of
program execution? We answer this question (affirmatively)
using the standard notion of observational congruence. This
is the natural equivalence relation generated by execution
of full programs, and as the name implies it is a congru-
ence relation. Briefly, two expressions are observationally
congruent iff they are interchangeable in all programs. Put
another way, expressions M and N , which may be higher-
order functions or other “non-programs,” are observation-
ally congruent iff we may replace any occurrence of M in
a full program by N without affecting the result of pro-
gram execution. In Section 7, we show that axioms (η)eq
and (sp)eq , and hence all the equational rules, are sound
for observational congruence. This shows that although we
have eliminated some equational principles from execution,
we have not invalidated our axiomatic semantics. The proof
uses postponement of (η) and (sp).

2 Signatures and terms

The language PCF may be defined over any collection of
base types (sorts) and constant symbols. The base types
might include natural numbers and booleans or atoms, lists,
trees and so on. Since PCF is a typed language, each con-
stant symbol must have a type. Typical constants include
the number 3, + for natural number addition, and the list
operation cons. A difference between PCF and the pure
typed lambda calculus is that we assume a fixed-point con-
stant fixσ: (σ→σ)→σ for each type σ.

Using b to stand for any base type, the type expressions
of PCF are defined by the grammar

σ: : = b | σ1→σ2 | σ1 × σ2.

For example, if nat is a base type, then nat→(nat×nat) is a
type. We may avoid writing too many parentheses by adopt-
ing the convention that→ associates to the right and × has
a higher precedence than →. Thus nat × nat→nat→nat is
the type of functions which, given a pair of natural numbers,
return a numeric function.

A PCF signature Σ = 〈B, C〉 consists of

3The untyped term 〈π1(λx. x), π2(λx. x)〉(λx. x) provides a simple
counterexample.

• a set B whose elements are called base types or type
constants, and

• a collection C of pairs 〈c, σ〉, where c is called a term
constant and σ is an algebraic type expression over B,
of the form b1→ . . .→bn→b for base types b1, . . . , bn, b,
with n ≥ 0.

We require that no term constant appear with more than
one type, and that the term constants be disjoint from type
constants and other syntactic classes of the language. If
〈c, σ〉 ∈ C, then c is said to be a constant symbol of type σ,
and we sometimes write cσ when convenient. Note that the
base types and term constants must be consistent, in that
the type of each constant may only contain the given base
types. For example, it only makes sense to have a natural
number constant 3nat when we have nat as a base type.
Note that constants have the curried type b1→ . . .→bn→b
instead of the more usual type b1× . . .×bn→b; this is chiefly
a matter of preference, since all of the results in this paper
hold in either case. The choice of curried functions simplifies
some proofs since we do not have to worry about sp-redexes
in the arguments of functions.

Before defining the syntax of terms over a given signa-
ture, we choose some infinite set V of variables. We will
give the well-formed terms and their types using an infer-
ence system for typing assertions

Γ ⊲ M : τ,

where Γ is a type assignment of the form

Γ = {x1: σ1, . . . , xk: σk},

with no xi occurring twice. Intuitively, the assertion Γ ⊲
M : τ means that if variables x1, . . . , xk have types σ1, . . . , σk

(respectively), then M is a well-formed term of type τ . If
Γ is any type assignment, we will write Γ, x:σ for the type
assignment

Γ, x: σ = Γ ∪ {x: σ}.

In doing so, we always assume that x does not appear in Γ.
The atomic expressions of PCF over the signature Σ =

〈B, C〉 are given by typing axioms. The typing axiom

(cst) ∅ ⊲ c: σ, provided 〈c, σ〉 ∈ C, or c is fix τ and
σ = (τ→τ)→τ

says that each constant symbol cσ is a term of type σ. Vari-
ables are given by the axiom

(var) x: σ ⊲ x: σ,

which says that a variable x has whatever type it is declared
to have. The compound expressions and their types are
defined by the following inference rules.

(× Intro)
M : σ, N : τ
〈M, N〉: σ × τ

(× Elim)
M : σ × τ

π1M : σ, π2M : τ

(→ Intro)
Γ, x: σ ⊲ M : τ

Γ ⊲ (λx:σ.M): σ→τ
.

(→ Elim)
Γ ⊲ M : σ→τ, Γ ⊲ N : σ

Γ ⊲ MN : τ

(add var)
Γ ⊲ M : σ

Γ, x: τ ⊲ M : σ

The final rule allows us to add variables to the type assign-
ment.

We say M is a PCF term over signature Σ with type τ in
context Γ if Γ⊲M : τ is either a typing axiom for Σ, or follows
from axioms by the typing rules. We often write Γ ⊲ M : τ
to mean that “Γ ⊲ M : τ is derivable,” in much the same way
as one often writes a formula ∀x.P (x) in logic, as a way of
saying “∀x.P (x) is true.” A term M is algebraic if it is of
base type and is formed from only algebraic constants and
variables of base type, using only (→ Elim), i.e., application.

The free and bound occurrences of a variable x in term M
have the usual inductive definition. In particular, a variable
x occurs free unless it is within the scope of λx, in which case
it becomes bound. Since the name of a bound variable is not
important, we will generally identify terms that differ only
in the names of bound variables. We will write [N/x]M
for the result of substituting N for free occurrences of x
in M , with renaming of bound variables as usual to avoid
capture. We use the notion of a context for substitution
without renaming: a context C[] for a type σ and variable
assignment Γ is a term with a “hole”, such that if Γ ⊲ M : σ,
then C[M] will be a well-typed term, formed by “plugging”
M into the hole.

Lemma 2.1 If Γ ⊲ M : σ, then every free variable of M ap-
pears in Γ.

Lemma 2.2 If Γ ⊲ M : σ and Γ′ ⊆ Γ contains all the free
variables of M , then Γ′ ⊲ M : σ.

Lemma 2.3 If Γ, x:σ ⊲ M : τ and Γ ⊲ N : σ are well-typed
terms, then so is the substitution instance Γ ⊲ [N/x]M : τ .

3 Equations and reduction rules

Typed equations have the form

Γ ⊲ M = N : τ,

where we assume that M and N have type τ in context Γ.
Intuitively, the equation

{x1: σ1, . . . , xk: σk} ⊲ M = N : τ

means that for all type-correct values of the variables x1: σ1

through xk: σk, expressions M and N denote the same ele-
ment of type τ .

The equational proof system for PCF is standard, with
axiom

(fix)eq Γ ⊲ fixσ = λf : σ→σ. f(fixσ f) : (σ→σ)→σ

for each fixed-point operator. The remaining axioms, (β)eq ,
(η)eq , (π)eq , and (sp)eq , resemble the corresponding reduc-
tion rules given below. Since we include type assignments in

equations, we have an equational version of the structural
rule

(add var)
Γ ⊲ M = N : σ

Γ, x: τ ⊲ M = N : σ

which lets us add an additional typing hypothesis.
Reduction is a “directed” form of equational reasoning

that we will adopt as a form of symbolic evaluation. Tech-
nically, reduction is a relation on α-equivalence classes of
terms. While we are only interested in reducing typed terms,
we will define reduction without mentioning types. Since
reduction models program execution, this is a way of em-
phasizing that execution does not depend on the types of
terms. We will formulate reduction so that the type of a
term does not change as it is reduced.

The “logical” axioms of reduction are

(fix) fixσ −→ λf : σ→σ. f(fixσ f)

for fixed-point operators, and the following standard reduc-
tion rules for functions and pairs:

(β) (λx: σ.M)N −→ [N/x]M

(η) λx:σ.Mx −→M, provided x not free in M

(π) πi〈M1, M2〉 −→Mi, for i = 1, 2

(sp) 〈π1P, π2P 〉 −→ P.

We also allow any set R of algebraic rewrite rules of the form
M → N , where M and N are algebraic terms over Σ with
Γ ⊲ M : b and Γ ⊲ N : b for some typing context Γ and basic
type b. Additional restrictions on M and N are that M may
not be a variable and all the variables in N must occur in
M . If no variable occurs twice in M , the rule M → N is said
to be left-linear , or simply linear. We write ER for the set of
all well-typed equations Γ ⊲ M = N : b with (M → N) ∈ R.

A term of the form (λx: σ.M)N is a β-redex , λx:σ.Mx is
an η-redex , and similarly for (π) and (sp). We say M reduces
to N in one step, written M → N , if N can be obtained by
applying a single reduction rule to some subterm of M . To

emphasize that a rule r is used, we write M
r
→ N . As

usual, →→ is the reflexive and transitive closure of one-step
reduction. A term M is in normal form if there is no N
with M → N .

Using Lemma 2.3, inspection of the logical rules, and the
constraints on variables in algebraic rules, it is easy to show
that one-step reduction preserves type.

Lemma 3.1 If Γ ⊲ M : σ, and M → N , then Γ ⊲ N : σ.

It follows by an easy induction that →→ also preserves type.
A critical property of reduction systems is confluence,

which may be drawn graphically as follows.

M

P

N1 N2

�
�

�
�	

�
�

��	

@
@

@
@R

@
@

@@R

@
@

@
@R

@
@

@@R

�
�

�
�	

�
�

��	

In this picture, the top two arrows are universally quanti-
fied, and the bottom two existentially, so the picture “says”
that whenever M →→ N1 and M →→ N2, there exists a term
P such that N1 →→ P and N2 →→ P . In lambda calculus, it
is traditional to say that a confluent notion of reduction is
Church-Rosser, since confluence for untyped lambda calcu-
lus was first proved by Church and Rosser [Chu41].

The convertibility relation ↔ on typed terms is the least
type-respecting equivalence relation containing reduction.
This can be visualized by saying that Γ ⊲ M ↔ N : σ iff
there is a sequence of terms M0, . . . , Mk with Γ ⊲Mi: σ such
that

M ≡M0 →→M1 ←← . . .→→Mk ≡ N.

In this picture, the directions of →→ and ←← should not be
regarded as significant. (However, by reflexivity and tran-
sitivity of →→, the order of reduction and “backward re-
duction” is completely general.) A few words are in order
regarding the assumption that Γ⊲Mi: σ for each i. For pure
typed lambda calculus, this assumption is not necessary; if
Γ⊲M ↔ N : σ and Γ∩Γ′ mentions all free variables of M and
N , then Γ′ ⊲ M ↔ N : σ. However, with algebraic rewrite
rules this fails.4 For conversion as defined here, we have
Γ ⊲ M ↔ N : σ using rules from R iff ER ⊢ Γ ⊲ M = N : σ,
regardless of confluence. Therefore, we only mention con-
vertiblity in the sequel.

We will write pcf
0

for the fixed-point and lambda cal-
culus reduction rules (fix), (β) and (π), and write pcf for
pcf

0
+R, where R is our chosen set of algebraic rules. We

will write pcf η,sp for pcf + (η) + (sp). Various labelled ver-
sions of these reductions will be introduced for technical
purposes in the following sections.

4 Example: natural numbers and booleans

An example signature for PCF provides booleans and nat-
ural numbers. The basic boolean expressions are the con-
stants true and false, and boolean-valued conditional

if 〈bool〉 then 〈bool〉 else 〈bool〉.

The basic natural number expressions include numerals

0, 1, 2, 3, . . . ,

the usual symbols for natural numbers, and addition, writ-
ten +. Thus if M and N are natural number expressions,
so is M + N .

We can also compute natural numbers using conditional
tests,

if 〈bool〉 then 〈nat〉 else 〈nat〉,

and compare natural numbers for equality. For example,
Eq? 3 0 has the boolean value false, since 3 is different from
0, but Eq? 5 5 = true . To summarize, the basic natural
number and boolean expressions may be characterized by
the following productions.

〈bool〉 : : = true | false |Eq? 〈nat〉 〈nat〉 |
if 〈bool〉 then 〈bool〉 else 〈bool〉

〈nat〉 : : = 0 | 1 | 2 | . . . | 〈nat〉+ 〈nat〉 |
if 〈bool〉 then 〈nat〉 else 〈nat〉

4Consider the algebraic rules fx −→ c and fx −→ d, for f : a→b.
In this case, we do not want ∅ ⊲ c ↔ d : b, since the equation c = d is
not provable without a variable x of type a.

The equational axioms for natural number and boolean
expressions are straightforward. We have an infinite collec-
tion of basic axioms

0 + 0 = 0, 0 + 1 = 1, . . . , 1 + 0 = 1, 1 + 1 = 2, . . .

for addition, and two axiom schemes for each type of condi-
tional:

if true then M else N = M,
if false then M else N = N.

There are infinitely many axioms for equality test, deter-
mined according to the scheme

Eq? n n = true , each numeral n,
Eq? mn = false, m, n distinct numerals.

Each of these axioms determines a reduction rule, read from
left to right. Note that we do not have the equational ax-
iom Eq? M M = true , for arbitrary natural number expres-
sion M . The reason is that the more general reduction rule
Eq? M M → true is non-linear, and confluence fails.

To see how the reduction rules allow us to evaluate ba-
sic natural number and boolean expressions, consider the
expression

if Eq? (6 + 5) 17 then (1 + 1) else 27.

We cannot simplify the conditional without first producing
a boolean constant true or false. This in turn requires nu-
merals for both arguments to Eq?, so we begin by applying
the reduction rule 6 + 5→ 11. This gives us the expression

if Eq? 11 17 then (1 + 1) else 27,

which is simplified using a reduction rule for Eq? to

if false then (1 + 1) else 27.

Finally, one of the rules for conditional applies, and we pro-
duce the numeral 27. In order to simplify this expression,
we needed to evaluate the test before simplifying the condi-
tional. However, it was not necessary to simplify the number
expression 1 + 1 since this is discarded by the conditional.
Since we may choose to reduce any subterm at any point,
we could have simplified 1 + 1 → 2 between any two of the
reduction steps given. With the added flexibility of “nonde-
terministic choice,” the steps involved mimic the action of
any ordinary interpreter fairly closely.

5 Confluence of the Reduction System pcf

We will now show that pcf -reduction is confluent. Standard
techniques for showing confluence in the typed lambda cal-
culus will not work directly, because the fixed-point opera-
tor allows terms that have no normal form. We will proceed
by first considering a related system, pcf N , in which recur-
sion is bounded, restoring strong normalization at the cost
of diminished computational power. An argument due to
Breazu-Tannen [BT88] will be used to show that pcf N is
confluent, from which we may prove that pcf itself is con-
fluent.

The system pcf N is formed by replacing the (fix) rule
with a family of labelled rules, one for each type σ and
natural number n > 0:

(fixn) fixn
σ −→ (λf : σ→σ. f(fixn−1

σ f)).

In the absence of algebraic rules, the effect of this is to limit
the number of times each fixed-point operator may reduce.
The reduction system with no algebraic rules will be denoted
pcf N

0
.

We use the method of logical relations to prove that pcf N
0

is confluent and strongly normalizing. Following [Mit90], if
we can show that a property S of terms (i.e., a type-indexed
family of predicates Sσ over terms of type σ) is type-closed ,
then that property holds for all well-formed terms. The
appropriate definition of type-closed depends on the types
available; for PCF we will need clauses for function and
product types. For convenience, we introduce the concept
of an elimination context , E [], which in the case of PCF is
a context with a single hole at the head of some sequence
of applications and projections (no abstractions or pairs are
allowed). We write S(E []) to mean that S holds for each
application argument in E [], e.g., if E [] ≡ (π1(· N1))N2,
then S(E []) is short for Sσ1(N1)∧Sσ2(N2). Then a property
S is type-closed for PCF if

• S(E []) implies Sρ(E [X]), where X is any variable or
constant of appropriate type

• if Sτ (Mx) for any variable x of type σ, then Sσ→τ (M)

• if Sσ(π1M) and Sτ (π2M), then Sσ×τ (M)

• if Sρ(E [[N/x]M]) and Sσ(N), then Sρ(E [(λx:σ. M)N])

• if Sρ(E [M]) and Sσ(N), then Sρ(E [π1〈M, N〉]) and
Sρ(E [π2〈N, M〉]).

Lemma 5.1 If a property S of terms is type-closed, then
Sσ(M) holds for every well-formed term M of type σ.

Proof. We may construct another property P from S such
that P implies S and P is an admissible logical relation; the
type-closed conditions on S are precisely those needed to
show this. Then by the Basic Lemma for logical relations,
P σ(M), and hence Sσ(M), holds for every M ; see [Mit90]
for details.

Theorem 5.2 The reduction system pcf N
0

is confluent and
strongly normalizing.

Proof. We need to show that the properties CR and SN ,
which assert that reduction from a term is respectively con-
fluent (Church-Rosser) and strongly normalizing, are type-
closed. Most of the conditions are easy to establish. The
hardest part is to show that each property satisfies the first
condition when X is a labelled fixed-point constant; in each
case an induction on the label is required.

Next we prove that the system pcf N , obtained by adding
a setR of confluent left-linear algebraic rules to pcf N

0
, is also

confluent. In [BT88], it is shown that the pure typed lambda
calculus (with β-reduction only) remains confluent when any
confluent (not necessarily linear)R is added. While the orig-
inal proof of one lemma has a subtle but reparable bug when
non-linear rules are considered [BTG89], we observe that the
proof is correct if all the rules in R are linear. Therefore,
our confluence proof for pcf N will be based on the origi-
nal development of [BT88]. We then use the linearity of R
again to prove that pcf itself is confluent; for this argument,
linearity is essential.

The following lemma allows us to consider algebraic re-
ductions only on terms in pcf N

0
normal form. By Theorem

5.2, every term M in the labelled language has a unique
pcf N

0
normal form, which we refer to as pcf N

0
(M).

Lemma 5.3

1. If M
r
→ N for r ∈ R, then pcf N

0
(M)

r
→→ pcf N

0
(N);

2. If M
pcf N

−→→ N , then pcf N
0

(M)
R
→→ pcf N

0
(N).

Lemma 5.4 R-reduction is confluent on labelled terms in
pcf N

0
normal form.

These two lemmas now let us prove that pcf N is conflu-
ent. As a corollary, we use the linearity of the rules in R to
show that pcf itself is confluent.

Theorem 5.5 pcf N -reduction is confluent on all labelled
PCF terms.

Proof. For any terms M , N , and P , if N
pcf N

←←− M
pcf N

−→→ P ,
then by Lemma 5.3 we know that

pcf N

0
(N)

R
←← pcf N

0
(M)

R
→→ pcf N

0
(P).

Lemma 5.4 then asserts that there is a Q such that

pcf N

0
(N)

R
→→ Q

R
←← pcf N

0
(P).

Since N
pcf N

−→→ pcf N
0

(N) and P
pcf N

−→→ pcf N
0

(P), we thus have

that N
pcf N

−→→ Q
pcf N

←←− P .

Corollary 5.6 pcf -reduction is confluent on all PCF terms.

Proof. For any terms M , N , and P , if N
pcf
←←−M

pcf
−→→ P ,

then there are corresponding labelled terms M∗, N∗, and

P ∗ such that N∗ pcf
←←− M∗ pcf

−→→ P ∗. To see this, let m be
the length of the longer of the two pcf -reduction sequences
from M , and form M∗ by labelling each fixσ in M with m;
then mimic the two reductions from M by replacing (fix)
steps with (fixn) steps, for appropriate choices of n. Now,
since pcf N is confluent, N∗ and P ∗ must have a common
reduct Q∗; erasing the labels in Q∗ gives a term Q such that

N
pcf
−→→ Q

pcf
←←− P , hence pcf is confluent.

The proof of this corollary uses linearity in asserting that
a single labelled term M∗ will permit both reductions from
M to be mimicked. This property fails in the presence of
non-linear rules because a reduction step may then require
that two subterms have identical labels. An example of the
problem, using (sp), is the term M∗ ≡ 〈π1fixm

σ I, π2fixn
σ I〉,

where I ≡ (λx: σ. x), and consider the following two reduc-
tion sequences:

M
sp
−→ fixm

σ I

and

M
fixn

−→ 〈π1fixm
σ I, π2(λf : σ→σ. f(fixn−1

σ f))I〉
β
−→→ 〈π1fixm

σ I, π2fixn−1

σ I〉
sp
−→ fixm

σ I.

In the first case, the (sp) step requires that m = n, while in
the second case we must have m = n− 1, hence there is no
such M∗.

6 Postponement

In this section, we analyze the reduction system pcf η,sp . Our

main technical tool is a postponement theorem for (η) and
(sp), which is proved following the pattern for postponement
of (η) in the untyped lambda calculus [Bar84]. While (sp)
postponement fails for untyped lambda terms (as noted in
the introduction), we are able to prove postponement for
typed PCF terms. The main “trick” in the proof is to find
the correct analogy between sp-reduction and η-reduction.
The postponement theorem will be used in the next section
to show that pcf is sufficient to compute the pcf η,sp normal

form of any program, i.e., any closed term of base type (in
fact, programs may have free variables as long as they are of
algebraic type, since they act like algebraic constants with
no associated reductions).

To show postponement of (η) and (sp) for pcf η,sp , we will

use the related system pcf lab , in which η- and sp-redexes are
represented as labels. We add term formation rules to allow
Mη whenever M is a term of function type, and Msp when-
ever M is of product type; substitution is then extended in
the natural way. We also define two functions from labelled
to unlabelled terms: | · | and ϕ. The action of | · | is simply
to erase all the labels, while ϕ replaces labelled subterms
with the corresponding redexes: ϕ(Mη) = (λx: σ. ϕ(M)x)
if M : σ→τ , and ϕ(Msp) = 〈π1ϕ(M), π2ϕ(M)〉. Finally, the

reduction system pcf lab is defined by lifting pcf to labelled
terms and adding the following contractions:

(act η) MηN −→MN

(act sp) πiM
sp −→ πiM, for i = 1, 2

(int η) (λx:σ. M)η −→ (λx: σ. M)

(int sp) 〈M, N〉sp −→ 〈M, N〉.

The effect of the first two rules is to simulate the reduction of
“active” η- and sp-redexes, i.e., those that are also top-level
constituents of β- or π-redexes. The other two rules mimic
the situation where an η- or sp-redex is reduced internally
by (β) or (π), e.g.,

λx:σ. (λx: σ. M)x
β
−→λx:σ. M ;

these two rules are not really necessary for the postponement
proof, but they will be needed in the next section and there
is no harm in adding them here.

We will now prove a series of lemmas relating pcf lab to
the unlabelled systems. The first three are easy inductions,
either on the length of a reduction or on the structure of a
term.

Lemma 6.1 If P
pcf lab
−→→ P ′, then ϕ(P)

pcf
−→→ ϕ(P ′).

Lemma 6.2 ϕ(P ′)
η,sp
−→→ |P ′|.

Lemma 6.3 If |P |
pcf
−→→ N , then there exists a term P ′ such

that P
pcf lab
−→→ P ′ and |P ′| ≡ N .

Lemma 6.4 If M
η,sp
−→M ′ pcf

−→→ N , then there exists a term

Q such that M
pcf
−→→ Q

η,sp
−→→ N .

Proof. Either M ≡ C[(λx:σ. Lx)] and M ′ ≡ C[L], or M ≡
C[〈π1L, π2L〉] and M ′ ≡ C[L], for some context C[] and term
L. In the first case, take P ≡ C[Lη]; in the second case, take
P ≡ C[Lsp]. Then M ≡ ϕ(P) and M ′ ≡ |P |. By Lemma

6.3, there is a term P ′ such that P
pcf lab
−→→ P ′ and |P ′| ≡ N .

Then by Lemma 6.1 we find that M ≡ ϕ(P)
pcf
−→→ ϕ(P ′).

Since by Lemma 6.2, ϕ(P ′)
η,sp
−→→ |P ′| ≡ N , we may take

Q ≡ ϕ(P ′).
From this lemma we may now prove the postponement

of (η) and (sp) in pcf η,sp .

Theorem 6.5 If L
pcf

η,sp
−→→ N , then there is a term M such

that L
pcf
−→→M and M

η,sp
−→→ N .

Proof. Given a reduction sequence from L to N , we may
use the previous lemma to push all the (η) and (sp) steps to
the end.

In the special case that N is a program in pcf η,sp nor-
mal form, which we refer to as a result , we find that the
reductions (η) and (sp) are unnecessary:

Corollary 6.6 If L
pcf

η,sp
−→→ R and R is a result, then L

pcf
−→→

R.

Proof. By Theorem 6.5 there is an M such that L
pcf
−→→

M
η,sp
−→→ R. If the last step in this reduction is P

η,sp
−→ R,

with Q the redex in P and Q′ its contractum in R, then
assume first that Q is passive. Thus Q′ is of non-base type
and it cannot be the head of an application or the subject of
a projection; if it is in the body of an abstraction or a pair,
then there is a larger subterm of R that is of non-base type.
Consider the largest such enclosing subterm (possibly Q′

itself). Since R is a normal form of base type, this subterm
must be in the argument of an application. But algebraic
constants only take base type arguments, and the presence
of a fix contradicts R being in normal form, so the head of
the application must be a variable. This is also impossible,
because there are no free variables in R (except perhaps of
algebraic type), and a surrounding abstraction would give
yet a larger subterm of non-base type. Hence Q must be
active and we may use Lemma 6.4 to push this step in front
of the (η) and (sp) steps; this may be repeated to eliminate
all of the non-pcf reduction steps.

7 The Result Property

Although pcf η,sp is not confluent, there are other proper-
ties of reduction that might be considered as plausible sub-
stitutes. In this section, we will show that pcf η,sp has a
weaker result property. To put this property in perspective,
we might consider three general properties of reduction, in
order of decreasing strength. These are confluence, the so-
called normal form property of [Kd89], which says that if
Γ ⊲ M ↔ N : σ and N is a normal form, then M →→ N , and
the uniqueness of normal forms. It is not hard to see that
confluence implies the normal form property, and the nor-
mal form property implies that each term has at most one
normal form. While Klop and de Vrijer have shown that
the normal form property fails in untyped lambda calculus
with surjective pairing, we will show that typed PCF has a
modified version of this property, which we call the result
property.

The result property, proved in Theorem 7.4 below, states
that if M is pcf η,sp convertible to a result N (see Section

6), then M is pcf η,sp reducible to N . Since conversion is
equivalent to provable equality in the full PCF proof system,
it follows by Corollary 6.6 that if a term M is provably equal

to a result, then M
pcf
−→→ N . Furthermore, it follows from

the result property and postponement that (η) and (sp) are
sound equational rules for reasoning about pcf observational
congruence. Thus, when combined with other properties
of pcf η,sp and pcf reduction, the result property not only
gives a certain coherence to pcf η,sp reduction, but relates

provable equality using (η) and (sp) to program execution
without these “non-computational” rules.

We will prove the result property using a series of lemmas
similar to those used to show postponement in Section 6.

The same labelled system pcf lab will be used, and here the
internal rules will be important.

Lemma 7.1 If P
pcf lab
−→→ P ′, then |P |

pcf
−→→ |P ′|.

Lemma 7.2 If ϕ(P)
pcf
−→→ R and R is a result, then there

exists a term P ′ such that P
pcf lab
−→→ P ′ and ϕ(P ′) ≡ |P ′| ≡ R.

Proof. Since there are no η- or sp-redexes in R, there will
be no labels left in P ′. Therefore, we will have ϕ(P ′) ≡ |P ′|,
and every descendent of the redex in ϕ(P) corresponding to
a label in P must eventually either pcf -reduce or be erased.
The pcf -reductions will correspond to cases where a redex
either is active or reduces internally; they may thus be simu-
lated by the labelled reduction. One complication comes in
simulating the reduction step 〈π1M, π2M〉→〈π1M

′, π2M〉;
there is no reduction on the corresponding labelled term
Msp that matches this, but since pcf is confluent and R is
in normal form, we know that the two components of the
pair will eventually reduce to the same normal form (or the
entire pair will be erased), so we may arbitrarily choose to
follow reductions to the first component.

The other situation where we must be careful is when
there are rules in R of the form (fM1 . . . Mk−1x)→N ; i.e.,
rules that accept an arbitrary rightmost argument. If P ≡
(fM1 . . . Mk−1)

η, then ϕ(P)→(λx: b. N), but P does not

pcf lab-reduce. This case is ruled out by the condition that
R be a result, however, because reasoning similar to that
in the proof of Corollary 6.6 shows that algebraic constants
in R must always be at the head of subterms of base type.
Hence we may simulate the pcf reduction in the labelled
system.

Lemma 7.3 If M
η,sp
−→ M ′ and M

pcf
−→→ R, where R is a

result, then M ′ pcf
−→→ R.

Proof. Take P as in Lemma 6.4, so that M ≡ ϕ(P) and
M ′ ≡ |P |. By Lemma 7.2, there is a term P ′ such that

P
pcf lab
−→→ P ′ and ϕ(P ′) ≡ |P ′| ≡ R. By Lemma 7.1 we find

that M ′ ≡ |P |
pcf
−→→ |P ′|, so we are done.

Now we may prove the result property for pcf .

Theorem 7.4 If Γ ⊲ N
pcf

η,sp
←→ R : σ and R is a result, then

N
pcf
−→→ R.

Proof. We will prove that if L
pcf

η,sp
−→→ N and L

pcf
η,sp
−→→

R, where R is a result, then N
pcf
−→→ R; this is easily seen

to be equivalent. By the postponement theorem there is a

term M such that L
pcf
−→→ M

η,sp
−→→ N ; by the corollary to

postponement, L
pcf
−→→ R. Now, since pcf is confluent and R

is in normal form, we know that M
pcf
−→→ R. Using Lemma

7.3 once for each reduction step from M to N , we find that

N
pcf
−→→ R.
As a corollary to this theorem, we will show that the

equational forms of (η) and (sp) are sound for reasoning
about observational congruence. First we define a program
context for a given type σ and variable assignment Γ to
be a context P [] such that P [M] is a program whenever
Γ⊲M : σ. We say that two terms M and N of the same type
σ and variable assignment Γ are observationally congruent ,
written Γ ⊲ M ≃ N : σ, if for every program context P [] for

σ and Γ, P [M] pcf -reduces to a result R iff P [N]
pcf
−→→ R. In

other words, M and N are completely interchangeable when
computing the result of a program.

Corollary 7.5 The equational axioms (η)eq and (sp)eq are
sound for ≃.

Proof. To show that (η) is sound, we need to show
that for any term M of type σ→τ over a variable assign-
ment Γ, with x a variable not free in M , we have Γ ⊲
(λx: σ. Mx) ≃M : σ→τ . If P [] is a program context for σ→τ

and Γ, then obviously Γ ⊲P [(λx:σ. Mx)]
pcf

η,sp
←→ P [M] : σ; if

P [(λx: σ. Mx)] pcf -reduces to a result R, then we also have

that Γ ⊲ P [M]
pcf

η,sp
←→ R : σ, and by the previous theorem

we find that P [M]
pcf
−→→ R. The same argument in reverse

shows that if P [M]
pcf
−→→ R, then P [(λx:σ. Mx)]

pcf
−→→ R.

Similar reasoning shows that (sp) is sound.

8 Conclusion

Since the full reduction system pcf η,sp with (η) and (sp)
is not confluent, we consider the more limited system pcf
more appropriate for PCF execution. The system pcf in-
cludes fixed-point rules (fix), lambda calculus rules (β) for
function calls and (π) for pairs, and any set R of left-linear,
confluent algebraic rules. We have shown that pcf reduction
is confluent and demonstrated several connections between
pcf and pcf η,sp . The first is that (η) and (sp) rules may be
postponed in pcf η,sp reduction, and so whenever a closed
term of base type pcf η,sp reduces to normal form, this re-

duction may be accomplished without (η) or (sp). Thus, if
we consider programs to be closed terms of base type (or
any product of such types), pcf is equivalent for the pur-
pose of program execution to the apparently stronger but
non-confluent pcf η,sp . We also prove a result property of

pcf η,sp in Section 7, from which it follows that (i) whenever

a term is provably equal (in the full system) to a result, the
term reduces to this result by pcf reduction, and (ii) all
equational rules, including (η)eq and (sp)eq , are sound for
pcf observational congruence. In summary, these technical
results suggest that while the full equational proof system is
a natural “axiomatic semantics” for PCF, a more limited re-
duction system has more desirable technical properties and
seems suitable as a corresponding operational semantics.

One open problem is to extend our confluence theorem to
include reduction rules for non-algebraic terms. For exam-
ple, we might like to give reduction rules for the evaluation
of some higher-order function, and be sure that the result-
ing extension of pcf is confluent. Presumably our current
proof already applies to some cases of this form, but we
have not yet done a careful analysis. Another problem is to
show that some deterministic strategy is sufficient for PCF
evaluation. “Left-most” reduction, which is adequate for
lambda calculus, does not make sense for algebraic terms.
The reason is that there is no essential difference between
cons(atom , list) and cons(list , atom), for example. However,
we conjecture that a suitable adaptation of “left-most” to
algebraic terms will prove satisfactory, at least for the sim-
ple case of non-overlapping algebraic rules. This would give
a correspondence between nondeterministic reduction and
the deterministic evaluation strategy used in the semantic
study of [Plo77], providing a full correspondence between
axiomatic, operational and denotational semantics of PCF.

Another possible extension is to exploit the analogies be-
tween function and product types, as for example in the
postponement proof, to add other type constructors such as
sums (which would introduce case statements and, as a spe-
cial case, conditionals) or streams. In categorical terms, each
of these type constructors corresponds to some adjunction,
and the extensional rules may be derived from one direction
of the conditions for being an adjunction. This is most eas-
ily expressed in the context of PCF by observing that (β)
and (π) give the result of composing the type elimination
rules (→ Elim) and (× Elim) with the respective introduc-
tion rules (→ Intro) and (× Intro). The extensional rules
do the converse, first eliminating and then re-introducing a
type constructor; as such, they produce no observable effect.
We expect there to be similar results about the adequacy of
an operational semantics excluding all such extensional rules
for PCF when augmented with other suitable type construc-
tors.
Acknowledgement: We thank P.-L. Curien and R. Stat-
man for helpful discussions.

References

[Bar84] H.P. Barendregt. The Lambda Calculus: Its
Syntax and Semantics. North Holland, 1984.

[BT88] V. Breazu-Tannen. Combining algebra and
higher-order types. In Third IEEE Symp.
Logic in Computer Science, pages 82–90, 1988.

[BTG89] V. Breazu-Tannen and J.H. Gallier. Polymor-
phic rewriting conserves algebraic strong nor-
malization and confluence. In 16th Int’l Col-
loq. on Automata, Languages and Program-
ming, pages 137–159. Springer Verlag, LNCS
37, 1989.

[Chu41] A. Church. The Calculi of Lambda Conversion.
Princeton Univ. Press, 1941. Reprinted 1963
by University Microfilms Inc., Ann Arbor, MI.

[Hen80] P. Henderson. Functional Programming.
Prentice–Hall, 1980.

[HWWW85] J.Y. Halpern, J.H. Williams, E.L. Wimmers,
and T.C. Winkler. Denotational semantics
and rewrite rules for FP. In Proc. 12-th

ACM Symp. on Principles of Programming
Languages, pages 108–120, January 1985.

[Kd89] J.W. Klop and R.C. de Vrijer. Unique normal
forms for lambda calculus with surjective pair-
ing. Information and Computation, 80(2):97–
113, 1989.

[Klo80] J.W. Klop. Combinatory Reduction Systems.
PhD thesis, University of Utrecht, 1980. Pub-
lished as Mathematical Center Tract 129.

[Mit90] J.C. Mitchell. Type systems for program-
ming languages. In J. van Leeuwen et al., ed-
itor, Handbook of Theoretical Computer Sci-
ence. North-Holland, 1990. (To appear.).

[Nes89] D. Nesmith. The Church-Rosser property
in higher-order rewrite systems. Manuscript,
1989.

[Pey87] Simon L. Peyton Jones. The Implementa-
tion of Functional Programming Languages.
Prentice–Hall, 1987.

[Plo77] G.D. Plotkin. LCF considered as a program-
ming language. Theoretical Computer Science,
5:223–255, 1977.

[Pot81] G. Pottinger. The Church–Rosser theorem for
typed λ-calculus with surjective pairing. Notre
Dame Journal of Formal Logic, 22(3):264–268,
1981.

[Sco69] D.S. Scott. A type–theoretic alternative to
CUCH, ISWIM, OWHY. Manuscript, 1969.

[Tur85] D.A. Turner. Miranda: a non-strict functional
language with polymorphic types. In IFIP
Int’l Conf. on Functional Programming and
Computer Architecture, Nancy, Lecture Notes
in Computer Science 201, New York, 1985.
Springer-Verlag.

