
SCALES: Learning Multimedia in a Mixed-Paradigm
Language

Cory D. Boatright
Computer Science Department

Hiram College
boatrightcd@hiram.edu

Brian T. Howard
Computer Science Department

DePauw University
bhoward@depauw.edu

Abstract

Learning functional programming is difficult
for beginning programmers, especially when
the most common examples come from data
structures such as lists and trees. We be-
lieve an environment that supports working
with multimedia objects, such as graphics
and music, will help a student learn func-
tional programming in a more efficient and
productive manner. For this reason, we have
started development of a set of media li-
braries in the Scala programming language.
Our plan is to create an integrated develop-
ment environment built on Eclipse that pro-
vides access to these tools. In this paper, we
explain the design of our libraries, which we
have named the SCALES project, and show
library functionality by providing examples
of Sierpinski’s Triangle, the Towers of Hanoi,
and Frère Jacques.

1 Introduction

Over the years Computer Science depart-
ments everywhere have tried to find the op-
timal language and technique to teach pro-
gramming to beginning majors. Further-
more, the different paradigms implemented
by programming languages can make tran-

sitioning from one language to another very
difficult. The functional paradigm is often
particularly challenging to learn, and offer-
ings to assist in this endeavor have been
sparse. Many students must resign them-
selves to learning LISP, with emacs typically
being their only IDE.

An advantage of teaching a functional lan-
guage is that it can provide a clean environ-
ment in which to introduce recursion and ab-
straction. Features such as first-class func-
tion values and pattern-matching support
powerful operations on recursive data, such
as lists, while the absence of side-effecting
assignment statements enables simple argu-
ments about the results of execution. Such
concepts make the effort of learning a func-
tional language worth the rewards, but there
is an obvious problem with the lack of sup-
port for functional languages.

We have developed graphics and MIDI li-
braries using the Scala programming lan-
guage [11] to help bridge this gap. These
libraries will be used in the creation of
SCALES, a plugin for the Eclipse IDE [2].
We explain the capabilities of these libraries
and provide examples of their use, illustrat-
ing SCALES’ ability to solve some of the
problems experienced while adapting to a
new programming paradigm. Computer Sci-

ence students often want to have some sort of
visual or audible response in their programs,
and the multimedia support in SCALES will
provide such feedback. Additionally, the
IDE described in more detail in Future Work
will solve the problem of requiring the use of
a text editor in the absence of a true IDE.

1.1 Scala

Scala is a functional and object oriented pro-
gramming language that compiles to Java
bytecode. It is being developed by the
LAMP group at the École Polytechnique
Fédérale de Lausanne. Often, a student is
taught a language briefly in order to enforce
specific concepts, and the language is then
remembered only as a “nifty” footnote in
their educational career. This early retire-
ment of a language is normally due to poor
support for the language or difficulty in dis-
tributing software to a range of users. Since
Scala compiles to Java bytecode, a student
appreciating Scala may continue to create
and deploy software in this language with-
out inconveniencing end users. Furthermore,
since Scala’s object model is compatible with
Java’s, the two languages may be easily in-
termixed in a single project; in particular,
all of the Java standard library classes are
directly usable within Scala.

The hybrid paradigm also makes program-
ming in Scala a more natural transition in
an introductory programming course. Scala
bears a close resemblance to Java, and the
learning curve between the two languages
can be as simple as learning slightly dif-
ferent syntax. Many universities and col-
leges are teaching Java as a first language,
and a short unit on functional programming
in Scala would be smoother than a sudden
transition to LISP. As an example, consider
the code in Figure ??, which show the re-
cursive factorial function in Java, Scala, and

LISP. Although they are clearly related, the
Scala code lowers several of the barriers (e.g.,
prefixed arithmetic operators, and the need
to understand how the special form if dif-
fers from other function calls) presented by
LISP.

int factorial(int n) {

if (n <= 1) return 1;

else return n * factorial(n - 1);

}

def factorial(n: Int): Int =

if (n <= 1) 1

else n * factorial(n - 1)

(defun factorial (n)

(if (<= n 1)

1

(* n (factorial (- n 1)))))

Figure 1: Factorial in Java, Scala, and LISP

Despite Scala’s similarity and compatibil-
ity with Java, the functional nature of Scala
makes the languages substantially different.
To see this in a more sophisticated example
than factorial, consider the following code
which implements the while statement as a
function:

def While(test: => Boolean)

(body: => Unit): Unit = {

if (test) {

body

While(test)(body)

}

}

This takes advantage of several functional
features. The While function is written in
“curried” form, where the result of applying
While to the first argument is another func-
tion ready to be applied to the second argu-
ment. The => markers on these arguments

indicate that they are to be passed as “clo-
sures,” wrapped up as anonymous functions
which will be re-evaluated each time they
are referenced. The second argument can be
passed an entire block of statements; since
all statements in Scala are expressions, this
will be treated as an expression of type Unit
(analogous to Java’s void type). Finally,
the While function is “tail-recursive”—the
Scala compiler turns it into JVM code that
branches from the bottom of the function
back to the top, which avoids the stack over-
flow one would cause from writing similar
code in Java. The result is that you can
write

While (someTest) {

someActions

}

and it will compile to code almost as efficient
as the built-in while statement. Although
this example itself might not be appropri-
ate for an introductory programming class,
the concepts demonstrated are very useful
when implementing library classes such as
in SCALES.

2 Two-Dimensional

Graphics

Taking advantage of Scala’s relationship
with Java, we used the two-dimensional
graphics provided in the standard Java API
as a basis for our own libraries. Rather than
merely creating wrapper classes to bridge the
gap between the two languages, we saw fit
to make some simplifications to the overall
process of drawing the graphics. These im-
provements still allow for fast rendering of
two-dimensional figures.

Our geometric shapes are first and fore-
most wrapper classes and are implemented
as subclasses of their Java counterparts. To

provide a nicer code interface, color and
drawing are no longer handled explicitly by
a graphics context. Rather, the classes in
the library handle these aspects themselves,
with the color property handled through
method calls to the shape. We feel this is
far more intuitive, as a student can create
a red circle, rather than a circle that must
be drawn with a graphics context specified
to draw in red. A canvas class is provided
to facilitate the drawing of the shapes, and
basic shape primitives are provided for most
simple geometries, as well as a generic poly-
gon.

2.1 Sierpinski’s Triangle

A main theme to functional programming is
recursion. For this reason, the best exam-
ple of recursion with two-dimensional graph-
ics is inherently a fractal pattern. We have
decided to use Sierpinski’s Triangle as our
pattern for the example, based on a Haskell
example by Hudak [4]. Sierpinski’s Triangle,
also known as Sierpinski’s Gasket, is a pat-
tern formed from a triangle which is divided
into three parts, and each part is in turn di-
vided according to the same algorithm. The
algorithm is run a set number of iterations
or until a certain triangle size is attained, at
which time the triangles are filled, present-
ing the pattern to the viewer.

To create Sierpinski’s Triangle, we need
to create only two methods. A third, not
seen here, is currently used to display the
image and is a supplement in place of the
IDE, which will implement these libraries
and handle the displaying of graphical re-
sults. The first method we need creates a
filled right triangle. To create the triangle,
we use a polygon from the SCALES library
and define the points in the function. The
end result is seen in Figure 1.

The second method needed for the frac-

def fillTri(x: Int, y: Int,

size: Int): ShapeExt = {

PolygonExt(List((x, y),

(x+size, y),

(x, y-size)),

Color.BLUE, Color.BLACK)

}

Figure 2: Filled right triangle

tal construction is the recursive one. This
method divides a triangle until a size limit
is achieved. Three recursive calls are made
with each pass of the method, one for each of
the three parts of the triangle. The +++ op-
erator combines two shapes by drawing the
first over the second; the result is another
shape. By repeated use, it builds up the en-
tire composite image to be displayed. The
effect is similar to building a list recursively
in LISP. Figure 2 contains this method. The
picture generated by these two methods can
be seen in Figure 3.

def sTri(x: Int, y: Int, size: Int,

limit: Int): ShapeExt = {

if (size <= limit) {

fillTri(x, y, size)

} else {

val half = size / 2

sTri(x, y, half, limit) +++

sTri(x, y-half, half, limit) +++

sTri(x+half, y, half, limit)

}

}

Figure 3: Sierpinski’s triangle

Figure 4: Sierpinski’s triangle

3 Three-Dimensional

Graphics

The original intent for three-dimensional
graphics was to implement a library simi-
lar to the two-dimensional package. This
proved to be impossible. Java has no
three-dimensional graphics included in the
standard API, so support for this type of
multimedia had to be found elsewhere or
created from more basic elements. We
searched for several different existing three-
dimensional libraries and found JOGL [10],
jMonkeyEngine [8], and Java3D [6]. Due to
the fact we had little background knowledge
in graphics programming, we decided to im-
plement our libraries with the assistance of
Java3D because of the better tutorials and
documentation.
Java3D uses the scene graph structure to

generate a virtual world. In order to deal
with the more complex workings of a scene
graph, we could not merely create a set of
Scala wrapper classes around Java objects.
Rather, we created an abstraction for the

user of SCALES by presenting geometric
primitives as classes that can be operated on,
rather than a node in a complex graph. The
result of this development is a more intu-
itive package where a sphere can be rotated,
rather than a sphere’s geometric definition
being the child of a rotation node in a tree.

Once a series of primitives were created,
a further simplified world was built on top
of the new SCALES three-dimensional pack-
age. This simple world consisted of a board
with discrete coordinates, and methods that
could be used on the board to add, move,
and delete objects placed at each location.
In addition, only the top object at each lo-
cation can be operated on, and the board
itself can be textured by an image created
through use of the two-dimensional graph-
ics package. For more advanced graphics
work without discrete coordinates, the un-
restricted three-dimensional package is still
available for use. While more complex than
the simplified world, the package still serves
as an abstraction from the more complex
techniques in graphics, such as lighting and
matrix transformations.

3.1 Towers of Hanoi

Our second example is the classic “Tow-
ers of Hanoi.” This algorithm is a favorite
for showing recursion when teaching a func-
tional programming language, but the out-
put of the problem is generally given in
verbal descriptions. While visual students
may be able to see these descriptions in
their head, actually viewing the solution in a
three-dimensional world would be beneficial.

Using the package for a simplified three-
dimensional world, we have created an ex-
ample algorithm for the Towers of Hanoi.
The solution given in code fragments 4, 5,
and 6 works for any sized stack of disks,
while the screenshot shown in Figure 7 shows

the program while running with a tower size
of 5. As with the two-dimensional example,
code used to initialize the window has been
left out.

val aBoard: Board = Board(3, 1)

aBoard.create(0, 0, 1.0, 0.5,

Board.DISK, Color.LIGHT_GRAY)

aBoard.create(0, 0, 0.8, 0.5,

Board.DISK, Color.RED)

aBoard.create(0, 0, 0.6, 0.5,

Board.DISK, Color.BLUE)

aBoard.create(0, 0, 0.4, 0.5,

Board.DISK, Color.WHITE)

aBoard.create(0, 0, 0.2, 0.5,

Board.DISK, Color.YELLOW)

Figure 5: Creating Towers

def towers(height: Int, from: Int,

to: Int, other: Int) = {

if (height > 0) {

towers(height-1, from, other, to)

shift(from, to)

towers(height-1, other, to, from)

}

}

Figure 6: Solve the Towers

def shift(from: Int, to: Int) {

Thread.sleep(1000)

aBoard.move((from, 0), (to, 0))

}

Figure 7: Shift One Disk

In Figure 4, a board is first created that is
three cells long and one cell wide. The num-
ber of cells determines the range of valid dis-
crete coordinate locations, and all cells are
the same size. Once the board is created,

five disks are added to one space, and then
the algorithm can be called to move them.
When an object is added to the board the
coordinates, relative size with regard to the
cell, height, object type, and color must be
provided.

When a shape is moved on the board, the
origin and destination coordinates are pro-
vided as two tuples. If a shape is not at
the top of a stack, it cannot be accessed at
all when using this package. Not visible in
the screenshot in Figure 7 is the fact that
the camera is controllable via the keyboard.
The single lighting source serves to show the
three-dimensional nature of the objects and
is static.

4 Music

In addition to graphics, we wanted to sup-
port generation of music. Unlike one current
approach to using multimedia for introduc-
tory computer science [3], which works with
sound at the level of individual amplitude
samples, we decided to focus on a higher-
level view of music as comprised of notes
played by instruments. That is, we decided
to work at the level of MIDI files instead of
WAV files. This decision was influenced by
the Haskore music library for Haskell [4] and
also by the availability of two excellent Java
libraries for working with musical notes and
phrases, jMusic [9] and JFugue [7].

As with the graphics classes, we started by
looking at writing Scala wrappers for one of
these Java libraries. However, we found that
the programming model of jMusic was too
imperative, since it was based on the idea
of creating phrase objects and then adding
notes. For example, Figure 8 shows the
jMusic code necessary to play a C major
scale.

In contrast, the programming model of

val ph = new Phrase

ph.addNode(new Note(C5, q))

ph.addNode(new Note(D5, q))

ph.addNode(new Note(E5, q))

ph.addNode(new Note(F5, q))

ph.addNode(new Note(G5, q))

ph.addNode(new Note(A5, q))

ph.addNode(new Note(B5, q))

ph.addNode(new Note(C6, q))

Figure 9: Creating a Scale in jMusic

JFugue is optimized for creating simple
melodies using the concept of a “music
string.” For example, the C major scale ex-
ample in JFugue is simply new Pattern("C

D E F G A B C6") (this takes advantage of
JFugue’s defaults to octave five and quarter-
note duration). While this is convenient for
creating melodies, JFugue does not have an
easy way to combine two melody lines in par-
allel within the same voice; it can handle si-
multaneous notes (chords, including certain
cases where several short notes are played
against a longer note), but in order to com-
bine longer simultaneous phrases, the user
must place them in separate voices.

Our choice was to implement a model
based on Haskore. The primitive objects are
individual notes, consisting of a pitch and
a duration. These may be composed into
phrases through either sequential composi-
tion, where each successive note starts when
the preceding one ends, or through paral-
lel composition, where all the notes start at
the same time. Since each phrase itself has
a duration, phrases may be composed with
notes and other phrases in the same man-
ner. To render a piece of music, the built-up
structure of parallel and sequential phrases
is flattened into a single list of notes with
their start times, then handed to jMusic to
be turned into a MIDI sequence.

object FrereJacques {

def main(args: Array[String]) {

val h = HALF_NOTE

val q = QUARTER_NOTE

val e = EIGHTH_NOTE

val first = N(F5, q) | N(G5, q) |

N(A5, q) | N(F5, q)

val second = N(A5, q) | N(BF5, q) |

N(C6, h)

val third = N(C6, e) | N(D6, e) |

N(C6, e) | N(BF5, e) |

N(A5, q) | N(F5, q)

val fourth = N(F5, q) | N(C5, q) |

N(F5, h)

val pause = N(WHOLE_NOTE) * 2

val melody = first*2 | second*2 |

third*2 | fourth*2

val score = new MyScore(100)

score.add(melody &

(pause | melody) &

(pause * 2 | melody) &

(pause * 3 | melody))

Play.midi(score)

}

}

Figure 10: Frère Jacques

4.1 Frère Jacques

The code in Figure 9 is a complete
Scala program (minus some import state-
ments) demonstrating the SCALES music
classes. It plays a four-part round ver-
sion of the traditional tune Frère Jacques
(Figure 10). This demonstrates the higher-
level, algebraic view of musical structure
supported by our library. The tune is or-
ganized into four pairs of measures, each of
which consists of a single four-beat measure

played twice. The values first, second,
third, and fourth contain the notes for
these four distinct measures; the expres-
sion first*2 | second*2 is the sequential
composition of two copies of first followed
by two copies of second. Finally, the ex-
pression melody & (pause | melody) cre-
ates the parallel composition of the first
voice overlapping the second voice, which is
delayed by a two-measure pause.

5 Future Work

Our long-term goals are to extend an exist-
ing Scala plugin for the Eclipse IDE in or-
der to make multimedia output built into the
system. With this implementation added, if
a student’s program uses the simple world,
a graphics window will appear with the con-
tent displayed; the student will not need to
worry about handling the graphical user in-
terface code themselves. Similarly, if the mu-
sic functions are used, a music player will
automatically start appropriately. The ex-
isting IDE plugin’s features will handle such
things as syntax coloring and highlighting er-
rors in the code prior to compilation.

In addition, we would like to add fea-
tures both to the library and the IDE itself.
Functional reactive programming [4] could
be implemented into the two- or even three-
dimensional libraries so that animation can
also be achieved through functional meth-
ods; following [5], we hope to provide this in
a common framework with the parallel and
sequential composition of musical phrases.
Similarly, lazy evaluation could be added as
an example of another characteristic found
in many functional programming languages.
Lazy evaluation can be used in the display-
ing of fractal images that will retain their
structure even when zoomed in. This would
expand on our Sierpinski’s Triangle example,

Figure 8: Towers of Hanoi

Figure 11: Frère Jacques [12]

allowing it to be defined recursively past vis-
ible limits yet still allowing it to dynamically
use only the iterations necessary for the cur-
rent view.

A final feature we would like to implement
into the SCALES project is language restric-
tion. Scala is a powerful language with many
characteristics from both an object-oriented
and functional paradigm. When teaching
the basics of functional programming, a pro-
fessor may wish to have students activate a
restricted subset to prevent students from
drifting away from the functional features.
This will serve to simplify the Scala language
for the new student, a tactic also taken by
DrScheme [1].

Our code is still in its first stages, so op-
timizations could be made. Java3D classes
seem to provide an easier interface, but if
performance becomes an issue, the three-
dimensional library could be reimplemented
using JOGL’s lower-level OpenGL API.

6 Acknowledgments

This work was supported by a National Sci-
ence Foundation Research Experiences for
Undergraduates grant, number IIS-0552370.
Special thanks go to Dan Mateas, Simon’s
Rock College of Bard, who assisted in the
implementation of some of the work reported
here.

References

[1] DrScheme.
http://www.drscheme.org/.

[2] Eclipse. http://www.eclipse.org/.

[3] Mark Guzdial. Introduction to Com-
puting and Programming in Python: A
Multimedia Approach. Pearson Prentice
Hall, 2005.

[4] Paul Hudak. The Haskell School of Ex-
pression. Cambridge University Press,
2000.

[5] Paul Hudak. An algebraic theory of
polymorphic temporal media. Tech-
nical Report YALEU/DCS/RR-1259,
Yale University, Department of Com-
puter Science, July 2003.

[6] Java3D. http://java3d.dev.java.net/.

[7] JFugue. http://www.jfugue.org/.

[8] jMonkeyEngine.
http://www.jmonkeyengine.com/.

[9] jMusic. http://jmusic.ci.qut.edu.au/.

[10] JOGL. http://jogl.dev.java.net/.

[11] Scala. http://www.scala-lang.org/.

[12] Wikipedia. Frère jacques — wikipedia,
the free encyclopedia, 2007. [Online; ac-
cessed 29-September-2007].

