
FIXED POINTS AND EXTENSIONALITY

IN TYPED FUNCTIONAL PROGRAMMING

LANGUAGES

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Brian T. Howard

August 1992

c© Copyright 1992 by Brian T. Howard

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

John C. Mitchell
(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Vaughan Pratt

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Luca Cardelli
(DEC-SRC)

Approved for the University Committee on Graduate

Studies:

iii

Abstract

We consider the interaction of recursion with extensional data types in several typed

functional programming languages based on the simply-typed lambda calculus. Our

main results concern the relation between the equational proof systems for reasoning

about terms and the operational semantics for evaluating programs. We also present

several results about the expressivity of the languages, compared according to both

the functions and the data types definable in them. The methods used are those of

classical lambda calculus and category theory.

The first language discussed is a variant of Scott and Plotkin’s PCF, which adds

to the simply-typed lambda calculus products, fixed points of functions, and algebraic

data types specified by a signature and a set of equations. PCF is able to express

all partial computable functions over the given basic types, but the corresponding

reduction system is not confluent if we include the usual surjective pairing rule, which

expresses the extensionality of products. Extensionality is necessary in the proof

system for establishing many useful isomorphisms between types, but it does not

seem to have an intuitive “computational content.” We show that a smaller reduction

system without extensional rules is sufficient for computing the result of program

execution, and that this smaller system is confluent whenever the algebraic rules are

confluent and left-linear. If the algebraic rules are also terminating and left-normal

then a leftmost reduction strategy is complete for finding normal forms.

We then consider a pair of languages, λµν and λ⊥ρ, which support the definition

of structured data types through categorical means rather than via multi-sorted alge-

bras. The first language, λµν , extends the types of the simply-typed lambda calculus

with extensional products and sums, and least and greatest fixed points of positive

iv

recursive type expressions. By dropping the extensional rules as for PCF, we obtain a

confluent and strongly normalizing reduction system, adequate for obtaining results

of programs. It is easy to represent many common data types in this language, such

as booleans, natural numbers, lists, trees, and (computable) streams, as well as many

of the total functions over such structures. Indeed, we may define more functions

over the natural numbers than are provably total in Peano arithmetic, hence the lan-

guage is more expressive than Gödel’s system T. It is no more expressive than the

Girard/Reynolds system F in terms of definable functions; however, we are able to

define algorithms that are not expressible in F, such as a constant-time predecessor

function on the naturals.

The final language, λ⊥ρ, extends λµν by introducing lifted types, which contain an

element ⊥, called “bottom”, signifying that evaluation of a term of such a type may

not terminate. Lifted types allow us to find fixed points of mixed-variant recursive

type expressions; for example, the solution of X = X → X⊥ gives a type for expres-

sions of an eager untyped lambda calculus, while the solution of X = (X → X)⊥

is suitable as a type for expressions of a lazy untyped calculus. We again have a

confluent operational semantics for the language, although of course it is not strongly

normalizing. However, we show that a lazy reduction strategy will find normal forms

for terms which have them. We also examine the relations among the three kinds

of recursive type in λ⊥ρ, which we refer to as inductive (least), projective (greatest),

and retractive (mixed-variant); in the natural cpo model of the language, we give

conditions under which the different constructions will coincide.

v

Acknowledgements

The material in Chapter 2 is a revised and expanded version of a joint paper with

John Mitchell which was presented at the 1990 ACM Conference on Lisp and Func-

tional Programming [26]. Among the many people whom I wish to thank for helpful

discussions and insightful suggestions are Michael Barr, Val Breazu-Tannen, Kim

Bruce, Luca Cardelli, Pierre-Louis Curien, John Greiner, Bob Harper, Furio Honsell,

Pat Lincoln, Eugenio Moggi, Andy Pitts, Vaughan Pratt, Andre Scedrov, Rick Stat-

man, Ramesh Viswanathan, Roel de Vrijer, and Phil Wadler. In particular, this work

would not have been possible without the guidance and inspiration of my advisor,

John Mitchell, and the love, support, and wisdom of my wife, Eleanor.

This material is based upon work supported under a National Science Founda-

tion Graduate Fellowship. Any opinions, findings, conclusions or recommendations

expressed in this publication are those of the author and do not necessarily reflect

the views of the National Science Foundation.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

2 Extensionality in PCF with Algebraic Types 4

2.1 Signatures and terms . 9

2.2 Equations and reduction rules . 12

2.3 Example: natural numbers and booleans 15

2.4 Confluence of the reduction system pcf 17

2.5 Postponement . 22

2.6 The result property . 25

2.7 Expansion . 28

2.8 Completeness of leftmost reduction 30

2.9 Conclusion . 34

3 Inductive and Projective Types 35

3.1 Syntax of the language λµν . 38

3.2 Equational proof system for λµν . 48

3.3 The reduction system λµν
r . 55

3.4 Comparison with System T . 61

3.5 Comparison with System F . 69

vii

4 Retractive Types and Non-termination 74

4.1 Syntax of the language λ⊥ρ . 75

4.2 Equational proof system for λ⊥ρ . 84

4.3 The reduction system λ⊥ρ
r . 94

4.4 Example: call-by-name and call-by-value 100

4.5 Comparison of recursive types . 103

5 Conclusions 106

Bibliography 108

viii

Chapter 1

Introduction

The subject of this thesis is the interaction of recursion with extensionality in typed

functional programming languages. The particular languages we will be considering

are all extensions of the simply-typed lambda calculus, λτ , as described for example

in Appendix A of Barendregt [1]. The system λτ itself is not particularly expressive;

since every term has a normal form, only terminating functions are definable.1 In

Chapter 2 we add an explicit fixed point operator on values, while in Chapters 3 and

4 we extend the type system with solutions to recursive type equations; the net effect

in either case is that all partial recursive functions over the natural numbers become

expressible. By Church’s Thesis this means we can represent any computable func-

tion, using an appropriate coding of the function’s domain into the natural numbers.

For real programming applications, of course, we would not be satisfied with

a language that required coding everything into natural numbers before execution.

Instead we want types whose values have more structure. In Chapter 2 the types

which are added are products, whose values are pairs, and algebraic data types,

whose values are built up from a user-specified set of constructors. In Chapters 3 and

4 a more unified approach is taken, where the user may define types from products

and sums by taking fixed points of type expressions. In both cases we are interested

in proving that various types are in some sense equivalent; for example, we would like

1In fact, the only functions definable over the Church numerals are the extended polynomials ,
which include addition, multiplication, and zero-test, but not exponentiation [49, 52].

1

CHAPTER 1. INTRODUCTION 2

to be able to show that (A×B)→C and A→(B→C) are isomorphic, since the latter

is the type of “curried” versions of the two-argument functions of the former type.

To prove such equivalences we need to know that the basic type constructors such as

product and function space are extensional , in the sense that the whole of any term

of such a type is no greater than the sum of its parts. In the case of product, for

example, this is what is usually referred to as a surjective pairing — every element

of a product type is equal to the pair composed of the first and second projections

of the element. We draw considerable inspiration from category theory in developing

the systems in this thesis; in categorical terms, a type constructor is extensional when

it is universal , which means that it is unique in a particular way among some class

of constructors.

Extensionality causes several problems when naively combined with recursion. In

Chapter 2, the problem arises in trying to associate an operational semantics with

a given equational description of the language PCF. In the presence of recursively

formed terms, a reduction rule based on surjective pairing will cause confluence of

the system to fail; that is, there may be two distinct orders in which to perform reduc-

tions on a single term which will never be able to produce a common descendent term.

Even without recursion, the standard η-reduction rule, which provides extensionality

for functions, may cause a failure of confluence through interaction with algebraic

rules. We show that this dependence on reduction order is not an essential difficulty,

since there is a confluent reduction system without the extensional rules which is able

to compute the normal forms of all programs (technically, a program is a term of ob-

servable type with no free variables) that have normal forms in the full, non-confluent

system. This supplies a theoretical basis for the folkloric belief that the extensional

rules do not have any “computational content.” In Chapter 2 we also show that this

smaller reduction system remains confluent when combined with any confluent set of

linear algebraic rewrite rules, thus the resulting reduction system serves as a compu-

tationally adequate operational semantics corresponding to the axiomatic semantics

given by the equations (including extensionality) for the language.

The problem considered in Chapters 3 and 4 is that a type system with exten-

sional sum and product types and solutions to all recursive type equations must be

CHAPTER 1. INTRODUCTION 3

inconsistent — all the types will be isomorphic, and all the terms will be equal. The

standard solution is to drop the extensionality condition from either sums or products.

We prefer to keep extensionality, for the sake of the equational proof system, and in-

stead restrict the type equations which may be solved. A benefit of this approach

is that the resulting system, λ⊥ρ, contains a very expressive terminating subsystem

(this is the subject of Chapter 3), which permits us to analyze quite finely the possi-

ble sources of non-termination in programs; in theory, an optimizing compiler could

use this information to perform extensive partial evaluation of a program, with no

worry of going into an infinite loop (although this would be unacceptably inefficient

if applied naively). Another possible application of this terminating sublanguage is

in proving properties of programs, where knowing that a function is total may permit

stronger proof techniques. We show that the smaller, strongly normalizing calculus,

λµν , is more expressive than Gödel’s system T, because it is possible to define all the

functions that are provably total in Peano arithmetic as well as some that are not.

All the reduction systems we have mentioned so far are non-deterministic. By

showing that they are confluent we are able to abstract away considerations of re-

duction order and examine the properties of an “ideal” implementation. Since the

reduction system for λµν is strongly normalizing, we may choose any deterministic

strategy for evaluating programs and be guaranteed of reaching the same results. For

PCF and λ⊥ρ, however, the choice of strategy can affect whether reduction will reach

a normal form or diverge. We show for both of these languages that a leftmost reduc-

tion strategy is normalizing. The result for PCF depends on the form of the algebraic

rules; they must be terminating and left-normal , a syntactic condition which intu-

itively says that a leftmost strategy is normalizing for the algebraic rewrite system

alone.

Chapter 2

Extensionality in PCF with

Algebraic Types

Most systems of lambda calculus have three parts: an equational proof system, a

set of reduction rules, and a model theory. These correspond to the standard pro-

gramming language notions of axiomatic, operational, and denotational semantics.

To a first approximation, the connections between axiomatic and operational seman-

tics are straightforward in basic systems such as the simply-typed lambda calculus.

The reduction rules may be derived by orienting each equational axiom in a com-

putationally reasonable way and the resulting system is confluent. As a result, the

reduction rules serve simultaneously as a useful characterization of equational prov-

ability and as a natural model of execution. When we add recursion to simply-typed

lambda calculus with cartesian products, this straightforward correspondence breaks

down. Since confluence fails [38], the reduction rules do not give a good picture of

equational provability. Moreover, upon examining the reduction rules more carefully,

many investigators have come to the conclusion that neither η-reduction nor surjec-

tive pairing is computationally compelling. In fact, it seems to be a common view

that η-reduction and surjective pairing do not have any “computational content.”

Therefore, for both technical and intuitive reasons, we are led to define evaluation

without these reduction rules.

In this chapter, we study a simply-typed lambda calculus with functions, pairing,

4

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 5

fixed-point operators and arbitrary algebraic data types. We will refer to this language

as PCF, since it is based on the calculus considered in Plotkin’s seminal paper [43],

with pairing and algebraic data types added.1 If we include algebraic data types of

natural numbers and booleans, as in [43, 50], then it is easy to program any partial

recursive function on the natural numbers. With algebraic data types of trees, lists,

stacks, and so on, we may write common functional programs in the style of Miranda

or Lazy ML, for example [53].

While most sequential implementations of lazy languages are based on a deter-

ministic (typically “leftmost”) evaluation order, there are several reasons to study

arbitrary order. One motivation is parallel execution. If the result of evaluation does

not rely on evaluation order, then many subexpressions may safely be evaluated in

parallel (see [25, 40], for example, for related discussion). Another reason to consider

arbitrary evaluation order is to identify desirable properties of a particular imple-

mentation. For example, if a set of reduction (or evaluation) rules is confluent, then

the result of nondeterministic evaluation is well-defined and we may regard this as

the “ideal” implementation. We may then show that a particular evaluation order

is satisfactory by comparison with nondeterministic evaluation. We will do this in

Section 2.8, where we show that a leftmost reduction strategy is complete for finding

normal forms, provided the algebraic rules satisfy certain conditions.

For any variant of PCF with equationally-axiomatized algebraic data types, there

is a traditional and accepted equational proof system. The axioms of this proof system

include η-equivalence (extensionality) for functions

(η)eq λx: σ.Mx = M, x not free in M,

and the surjective pairing axiom

(sp)eq 〈π1P, π2P 〉 = P,

1The language itself seems attributable to Scott, since the basic ideas are presented in the
manuscript [50] and Plotkin’s name for the calculus is clearly derived from Scott’s LCF (Logic
for Computable Functions).

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 6

where π1 and π2 are the first and second projection functions. These seem essential

for proving common facts about functions and pairs. For example, both are needed

to establish that currying and uncurrying are inverses (or, equivalently, that types

σ→(τ→ρ) and (σ × τ)→ρ are isomorphic). However, neither seems to be used in

standard implementations. If we direct these equational axioms from left to right, we

obtain evaluation rules, (η) and (sp), that could be used in program execution but

which typically do not have any counterpart in practical implementation. One reason

surjective pairing is difficult to implement is that it is non-linear : the meta-variable P

occurs twice on the left-hand side. In order to apply the reduction, we must therefore

test two potentially large subexpressions for syntactic equality. This seems inefficient,

in general, and it follows from our results that such a test is unnecessary for evaluation

of complete programs.

In addition to the folkloric view that (η) and (sp) are not needed in computation,

which we justify in Corollary 2.5.6, there are technical problems with these rules.

While pure typed lambda calculus with these rules but without fixed-point operators is

confluent [45], the situation is substantially different in the presence of recursion. Even

without any algebraic data types, (sp) and recursion cause confluence to fail. This

may be demonstrated by adapting Klop’s well-known counterexample2 to confluence

in the untyped lambda calculus with surjective pairing [38]. Similar reasoning also

shows that in a language with recursion, confluence may fail when confluent but non-

linear algebraic rules are added. Although not as immediately problematic, (η) also

interferes with confluence of algebraic rules. For example, the simple rewrite rule

zero x −→ 0, combined with (η), is not confluent; the term λx: nat . zero x reduces

to both λx: nat . 0 and zero, which are distinct normal forms. Therefore, considering

only the technical property of confluence, both (η) and (sp) seem problematic.

Our first major theorem is that, without (η) and (sp), PCF reduction is confluent

over any algebraic data types, provided that the algebraic rewrite rules are all linear

and confluent when considered apart from PCF. This result, described in Section

2.4, extends a similar theorem of [6] to pairing and fixed-point operators. Our proof

2A slick presentation is given in [1]. However, the exact counterexample given there cannot be
typed. Instead, one must consider a version of the counterexample given in Klop’s thesis [28].

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 7

technique combines labelled reduction [1] with the method of [6], which relies on

strong normalization. In combining lambda calculus with additional reduction rules,

our theorem is also similar in spirit to the delta reduction theorem of Mitschke (see

[1]), although our result neither subsumes nor is subsumed by his — Mitschke deals

with the untyped calculus, so the delta rules may contain arbitrary lambda terms

instead of just algebraic terms, but the set of delta rules has to be disjoint, while we

only require that the algebraic rules be confluent. Given the apparent suitability of

PCF reduction without (η) and (sp), we proceed to study connections between this

limited reduction system and the natural equational axioms.

Since we have dropped two equational rules, it is not immediately clear whether

the reduction system is computationally adequate. In other words, do we still have

“enough” evaluation rules? While there are provably equal expressions, such as

λx: nat .zero x and zero, which do not reduce to a common form, we show that this is

not the case for “full programs.” In more detail, the programs we execute in practice

are closed expressions of basic types such as nat , bool and list , or perhaps products

of basic types. We show that for any closed expression M of “observable” type, and

possible result N of complete execution, M reduces to N using all reduction rules iff

M reduces to N without (η) and (sp). Thus we have not lost anything by dropping

these rules. Moreover, and perhaps more importantly, such expressions M and N

are provably equal, possibly using (η)eq and (sp)eq , iff M reduces to N by reduc-

tion without (η) and (sp). In standard computational terms, this demonstrates the

computational adequacy of our operational semantics with respect to the axiomatic

semantics (cf. [23]). The first of these theorems follows from a postponement prop-

erty of (η) and (sp), while the second uses a refinement of the postponement proof.

Typing is essential here, since (sp) postponement fails for untyped terms.3

Our last connection between axiomatic and operational semantics is soundness

of the axioms with respect to computation. In general terms, if we begin with an

intuitively appealing axiomatic semantics, then it seems fair to base evaluation on any

equational principles which follow from the axioms. However, once we have selected an

3The untyped term 〈π1(λx. x), π2(λx. x)〉(λx. x) provides a simple counterexample.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 8

operational semantics, we must also ask whether this semantics justifies the equational

principles we began with. Put simply, are the equational axioms sound statements

about the result of program execution? We answer this question (affirmatively) using

the standard notion of observational congruence. This is the natural equivalence

relation generated by execution of full programs, and as the name implies it is a

congruence relation. Briefly, two expressions are observationally congruent iff they

are interchangeable in all programs. Put another way, expressions M and N , which

may be higher-order functions or other “non-programs,” are observationally congruent

iff we may replace any occurrence of M in a full program by N without affecting the

result of program execution. In Section 2.6, we show that the axioms (η)eq and (sp)eq ,

and hence all the equational rules, are sound for observational congruence. This shows

that although we have eliminated some equational principles from execution, we have

not invalidated our axiomatic semantics. The proof uses postponement of (η) and

(sp).

In Section 2.7 we consider an alternate method of avoiding the confluence problems

of the extensional rules. By using (η) and (sp) as expansion instead of contraction

rules, we obtain a confluent reduction system for PCF. It is an immediate corollary of

the confluence theorem for this system that every term which is provably equal to a

normal form will reduce to a unique syntactic variant of that normal form known as a

long normal form; thus this system is useful for reasoning about equality of arbitrary

terms with normal forms. For reasoning about equality of programs, of course, the

computational adequacy theorem shows that the expansion rules add nothing.

Finally, we show that, under certain conditions on the algebraic rules, a leftmost

reduction strategy is normalizing. That is, if there is any reduction from a term M to

a normal form N , then there is a reduction from M to N in which the leftmost redex

is contracted at each step. This is similar to a proof by Klop [28] of a standardization

theorem for the untyped lambda calculus plus a left-normal, regular term rewriting

system, which generalizes our algebraic rules at the expense of requiring that the rules

be non-overlapping, a stronger condition than that they merely be confluent.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 9

2.1 Signatures and terms

The language PCF may be defined over any collection of base types (sorts) and

constant symbols. The base types might include natural numbers and booleans or

atoms, lists, trees and so on. Since PCF is a typed language, each constant symbol

must have a type. Typical constants include the number 3, + for natural number

addition, and the list operation cons . A difference between PCF and the pure typed

lambda calculus is that we assume a fixed-point constant fixσ: (σ→σ)→σ for each

type σ.

Using b to stand for any base type, the type expressions of PCF are defined by

the grammar

σ ::= b | σ1→σ2 | σ1 × σ2.

For example, if nat is a base type, then nat→(nat × nat) is a type. We may avoid

writing too many parentheses by adopting the convention that → associates to the

right and × has a higher precedence than →. Thus nat × nat→nat→nat is the type

of functions which, given a pair of natural numbers, return a numeric function.

A PCF signature Σ = 〈B,C〉 consists of

• a set B whose elements are called base types or type constants , and

• a collection C of pairs 〈c, σ〉, where c is called a term constant and σ is an

algebraic type expression over B, of the form b1→ . . .→bn→b for base types

b1, . . . , bn, b, with n ≥ 0.

We require that no term constant appear with more than one type, and that

the term constants be disjoint from type constants and other syntactic classes of the

language. If 〈c, σ〉 ∈ C, then c is said to be a constant symbol of type σ, and we

sometimes write cσ when convenient. Note that the base types and term constants

must be consistent, in that the type of each constant may only contain the given

base types. For example, it only makes sense to have a natural number constant

3nat when we have nat as a base type. Note that constants have the curried type

b1→ . . .→bn→b instead of the more usual type b1 × . . . × bn→b; this is chiefly a

matter of preference, since all of the results in this paper hold in either case. The

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 10

choice of curried functions simplifies some proofs since we do not have to worry about

sp-redexes in the arguments of functions.

Before defining the syntax of terms over a given signature, we choose some infinite

set V of variables. We will give the well-formed terms and their types using an

inference system for typing assertions

Γ ⊲ M : τ,

where Γ is a type assignment of the form

Γ = {x1: σ1, . . . , xk: σk},

with no xi occurring twice. Intuitively, the assertion Γ ⊲M : τ means that if variables

x1, . . . , xk have types σ1, . . . , σk (respectively), then M is a well-formed term of type

τ . If Γ is any type assignment, we will write Γ, x: σ for the type assignment

Γ, x: σ = Γ ∪ {x: σ}.

In doing so, we always assume that x does not appear in Γ.

The atomic expressions of PCF over the signature Σ = 〈B,C〉 are given by typing

axioms. The typing axiom

(cst) ∅ ⊲ c: σ, provided 〈c, σ〉 ∈ C, or c is

fix τ and σ = (τ→τ)→τ

says that each constant symbol cσ is a term of type σ. Variables are given by the

axiom

(var) x: σ ⊲ x: σ,

which says that a variable x has whatever type it is declared to have. The compound

expressions and their types are defined by the following inference rules.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 11

(× Intro)
Γ ⊲ M : σ, Γ ⊲ N : τ

Γ ⊲ 〈M,N〉: σ × τ

(× Elim)
Γ ⊲ M : σ × τ

Γ ⊲ π1M : σ, Γ ⊲ π2M : τ

(→ Intro)
Γ, x: σ ⊲ M : τ

Γ ⊲ (λx: σ.M): σ→τ

(→ Elim)
Γ ⊲ M : σ→τ, Γ ⊲ N : σ

Γ ⊲ MN : τ

(add var)
Γ ⊲ M : σ

Γ, x: τ ⊲ M : σ

The final rule allows us to add variables to the type assignment.

We say M is a PCF term over signature Σ with type τ in context Γ if Γ ⊲ M : τ

is either a typing axiom for Σ, or follows from axioms by the typing rules. We often

write Γ ⊲ M : τ to mean that “Γ ⊲ M : τ is derivable,” in much the same way as one

often writes a formula ∀x.P (x) in logic, as a way of saying “∀x.P (x) is true.” A term

M is algebraic if it is of base type and is formed from only algebraic constants and

variables of base type, using only (→ Elim), i.e., application.

The free and bound occurrences of a variable x in term M have the usual inductive

definition. In particular, a variable x occurs free unless it is within the scope of λx, in

which case it becomes bound. Since the name of a bound variable is not important,

we will generally identify terms that differ only in the names of bound variables. We

will write {N/x}M for the result of substituting N for free occurrences of x in M ,

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 12

with renaming of bound variables as usual to avoid capture. We use the notion of a

context for substitution without renaming: a context C[] for a type σ and variable

assignment Γ is a term with a “hole”, such that if Γ ⊲ M : σ, then C[M] will be a

well-typed term, formed by “plugging” M into the hole.

The following basic lemmas about terms are easily proved; see [35], e.g., for more

details.

Lemma 2.1.1 If Γ ⊲ M : σ, then every free variable of M appears in Γ.

Lemma 2.1.2 If Γ ⊲ M : σ and Γ′ ⊆ Γ contains all the free variables of M , then

Γ′ ⊲ M : σ.

Lemma 2.1.3 If Γ, x: σ ⊲ M : τ and Γ ⊲ N : σ are well-typed terms, then so is the

substitution instance Γ ⊲ {N/x}M : τ .

2.2 Equations and reduction rules

Typed equations have the form

Γ ⊲ M = N : τ,

where we assume that M and N have type τ in context Γ. Intuitively, the equation

{x1: σ1, . . . , xk: σk} ⊲ M = N : τ

means that for all type-correct values of the variables x1: σ1 through xk: σk, expressions

M and N denote the same element of type τ .

The equational proof system for PCF is standard, with axiom

(fix)eq Γ ⊲ fix σ = λf : σ→σ. f(fixσ f) : (σ→σ)→σ

for each fixed-point operator. We choose this form instead of the more common

fix σM = M(fix σM) simply to avoid an awkward clash with the (η) reduction rule,

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 13

since λx: σ→σ. fixσx could reduce to either λx: σ→σ. x(fix σx) or fix σ, which would

have no common reduct. This is not a serious problem, since the (η) rule will be

dropped, but using the (fix) axiom above makes things easier. The remaining axioms,

(β)eq , (η)eq , (π)eq , and (sp)eq , resemble the corresponding reduction rules given below.

Since we include type assignments in equations, we have an equational version

(add var)
Γ ⊲M = N : σ

Γ, x: τ ⊲ M = N : σ

of the structural rule which lets us add an additional typing hypothesis.

Reduction is a “directed” form of equational reasoning that we will adopt as a

form of symbolic evaluation. Technically, reduction is a relation on α-equivalence

classes of terms. While we are only interested in reducing typed terms, we will define

reduction without mentioning types. Since reduction models program execution, this

is a way of emphasizing that execution does not depend on the types of terms. We

will formulate reduction so that the type of a term does not change as it is reduced.

The “logical” axioms of reduction are

(fix) fix σ −→ λf : σ→σ. f(fixσ f)

for fixed-point operators, and the following standard reduction rules for functions and

pairs:

(β) (λx: σ.M)N −→ {N/x}M

(η) λx: σ.Mx −→M, provided x not free in M

(π) πi〈M1, M2〉 −→Mi, for i = 1, 2

(sp) 〈π1P, π2P 〉 −→ P.

We also allow any set R of algebraic rewrite rules of the form M → N , where M

and N are algebraic terms over Σ with Γ ⊲M : b and Γ ⊲ N : b for some typing context

Γ and basic type b. Additional restrictions on M and N are that M may not be a

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 14

variable and all the variables in N must occur in M . If no variable occurs twice in

M , the rule M → N is said to be left-linear , or simply linear. We write ER for the

set of all well-typed equations Γ ⊲ M = N : b with (M → N) ∈ R.

A term of the form (λx: σ.M)N is a β-redex , λx: σ.Mx is an η-redex , and similarly

for (π) and (sp). We say M reduces to N in one step, written M → N , if N can be

obtained by applying a single reduction rule to some subterm of M . To emphasize

that a rule r is used, we write M
r
→ N . As usual, →→ is the reflexive and transitive

closure of one-step reduction. A term M is in normal form if there is no N with

M → N .

Using Lemma 2.1.3, inspection of the logical rules, and the constraints on variables

in algebraic rules, it is easy to show that one-step reduction preserves type.

Lemma 2.2.1 If Γ ⊲ M : σ, and M → N , then Γ ⊲ N : σ.

It follows by an easy induction that →→ also preserves type.

A critical property of reduction systems is confluence, which may be drawn graph-

ically as follows.

M

P

N1 N2

�
�

�
�	

�
�

��	

@
@

@
@R

@
@

@@R
@

@
@
@R

@
@

@@R

�
�

�
�	

�
�

��	

In this picture, the top two arrows are universally quantified, and the bottom two

existentially, so the picture “says” that whenever M →→ N1 and M →→ N2, there

exists a term P such that N1 →→ P and N2 →→ P . In lambda calculus, it is traditional

to say that a confluent notion of reduction is Church-Rosser, since confluence for

untyped lambda calculus was first proved by Church and Rosser [9].

The convertibility relation ↔ on typed terms is the least type-respecting equiva-

lence relation containing reduction. This can be visualized by saying that Γ ⊲ M ↔

N : σ iff there is a sequence of terms M0, . . . ,Mk with Γ ⊲ Mi: σ such that

M ≡M0 →→M1 ←← . . .→→Mk ≡ N.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 15

In this picture, the directions of →→ and ←← should not be regarded as significant.

(However, by reflexivity and transitivity of→→, the order of reduction and “backward

reduction” is completely general.) A few words are in order regarding the assumption

that Γ ⊲ Mi: σ for each i. For pure typed lambda calculus, this assumption is not

necessary; if Γ ⊲M ↔ N : σ and Γ ∩ Γ′ mentions all free variables of M and N , then

Γ′ ⊲ M ↔ N : σ. However, with algebraic rewrite rules this fails.4 For conversion as

defined here, we have Γ ⊲ M ↔ N : σ using rules from R iff ER ⊢ Γ ⊲ M = N : σ,

regardless of confluence. Therefore, we only mention convertibility in the sequel.

We will write pcf 0 for the fixed-point and lambda calculus reduction rules (fix),

(β) and (π), and write pcf for pcf 0 +R, where R is our chosen set of algebraic rules.

We will write pcf η,sp for pcf +(η)+(sp). Various labelled versions of these reductions

will be introduced for technical purposes in the following sections.

2.3 Example: natural numbers and booleans

An example signature for PCF provides booleans and natural numbers. The basic

boolean expressions are the constants true and false, and boolean-valued conditional

if 〈bool〉 then 〈bool〉 else 〈bool〉.

The basic natural number expressions include numerals

0, 1, 2, 3, . . . ,

the usual symbols for natural numbers, and addition, written +. Thus if M and N

are natural number expressions, so is M +N .

We can also compute natural numbers using conditional tests,

if 〈bool〉 then 〈nat〉 else 〈nat〉,

4Consider the algebraic rules fx −→ c and fx −→ d, for f : a→b. In this case, we do not want
∅ ⊲ c↔ d : b, since the equation c = d is not provable without a variable x of type a.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 16

and compare natural numbers for equality. For example, Eq? 3 0 has the boolean value

false, since 3 is different from 0, but Eq? 5 5 = true. To summarize, the basic natural

number and boolean expressions may be characterized by the following productions.

〈bool〉 ::= true | false |Eq? 〈nat〉 〈nat〉 |

if 〈bool〉 then 〈bool〉 else 〈bool〉

〈nat〉 ::= 0 | 1 | 2 | . . . | 〈nat〉+ 〈nat〉 |

if 〈bool〉 then 〈nat〉 else 〈nat〉

The equational axioms for natural number and boolean expressions are straight-

forward. We have an infinite collection of basic axioms

0 + 0 = 0, 0 + 1 = 1, . . . , 1 + 0 = 1, 1 + 1 = 2, . . .

for addition, and two axiom schemes for each type of conditional:

if true then M else N = M,

if false then M else N = N.

There are infinitely many axioms for equality test, determined according to the scheme

Eq?nn = true, each numeral n,

Eq?mn = false, m, n distinct numerals.

Each of these axioms determines a reduction rule, read from left to right. Note that

we do not have the equational axiom Eq?MM = true, for arbitrary natural number

expression M . The reason is that the more general reduction rule Eq?MM → true

is non-linear, and confluence fails.

To see how the reduction rules allow us to evaluate basic natural number and

boolean expressions, consider the expression

if Eq? (6 + 5) 17 then (1 + 1) else 27.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 17

We cannot simplify the conditional without first producing a boolean constant true

or false. This in turn requires numerals for both arguments to Eq?, so we begin by

applying the reduction rule 6 + 5→ 11. This gives us the expression

if Eq? 11 17 then (1 + 1) else 27,

which is simplified using a reduction rule for Eq? to

if false then (1 + 1) else 27.

Finally, one of the rules for conditional applies, and we produce the numeral 27. In

order to simplify this expression, we needed to evaluate the test before simplifying

the conditional. However, it was not necessary to simplify the number expression

1 + 1 since this is discarded by the conditional. Since we may choose to reduce any

subterm at any point, we could have simplified 1 + 1 → 2 between any two of the

reduction steps given. With the added flexibility of “nondeterministic choice,” the

steps involved mimic the action of any ordinary interpreter fairly closely.

2.4 Confluence of the reduction system pcf

We will now show that pcf -reduction is confluent. Standard techniques for showing

confluence in the typed lambda calculus will not work directly, because the fixed-point

operator allows terms that have no normal form. Conversely, we can not use results in

the untyped lambda calculus such as Mitschke’s delta reduction theorem because we

are only assuming that the algebraic rules are confluent and linear. We will proceed

by first considering a related system, pcf N , in which recursion is bounded, restoring

strong normalization at the cost of diminished computational power.

The system pcf N is formed by replacing the (fix) rule with a family of labelled

rules, one for each type σ and natural number n > 0:

(fixn) fixn
σ −→ (λf : σ→σ. f(fixn−1

σ f)).

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 18

In the absence of algebraic rules, the effect of this is to limit the number of times

each fixed-point operator may reduce. The reduction system with no algebraic rules

will be denoted pcf N
0 . Our first task will be to prove that pcf N0 is confluent. An

argument due to Breazu-Tannen [6] will then be used to show that pcf N is confluent,

from which we may prove that pcf itself is confluent.

We use the method of logical relations to prove that pcf N
0 is confluent and strongly

normalizing. Following [35], if we can show that a property S of terms (i.e., a type-

indexed family of predicates Sσ over terms of type σ) is type-closed , then that property

holds for all well-formed terms. The appropriate definition of type-closed depends on

the types available; for PCF we will need clauses for function and product types. For

convenience, we introduce the concept of an elimination context , E [], which in the

case of PCF is a context with a single hole at the head of some sequence of applications

and projections (no abstractions or pairs are allowed). We write S(E []) to mean that

S holds for each application argument in E [], e.g., if E [] ≡ (π1(· N1))N2, then S(E [])

is short for Sσ1(N1) ∧ Sσ2(N2). Then a property S is type-closed for PCF if

• S(E []) implies Sρ(E [X]), where X is any variable or constant of appropriate

type

• if Sτ (Mx) for any variable x of type σ, then Sσ→τ (M)

• if Sσ(π1M) and Sτ (π2M), then Sσ×τ (M)

• if Sρ(E [{N/x}M]) and Sσ(N), then Sρ(E [(λx: σ.M)N])

• if Sρ(E [M]) and Sσ(N), then Sρ(E [π1〈M,N〉]) and Sρ(E [π2〈N,M〉]).

Lemma 2.4.1 If a property S of terms is type-closed, then Sσ(M) holds for every

well-formed term M of type σ.

Proof. We may construct another property P from S such that P implies S and P

is an admissible logical relation; the type-closed conditions on S are precisely those

needed to show this. Then by the Basic Lemma for logical relations, P σ(M), and

hence Sσ(M), holds for every M ; see [35] for details.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 19

Theorem 2.4.2 The reduction system pcf N
0 is confluent and strongly normalizing.

Proof. We need to show that the properties CR and SN , which assert that reduc-

tion from a term is respectively confluent (Church-Rosser) and strongly normalizing,

are type-closed. Most of the conditions are easy to establish. The hardest part is to

show that each property satisfies the first condition when X is a labelled fixed-point

constant; in each case an induction on the label is required.

Next we prove that the system pcf N , obtained by adding a set R of confluent

left-linear algebraic rules to pcf N
0 , is also confluent. In [6], it is shown that the pure

typed lambda calculus (with β-reduction only) remains confluent when any confluent

(not necessarily linear) R is added. While the original proof of one lemma has a

subtle but reparable bug when non-linear rules are considered [7], we observe that

the proof is correct if all the rules in R are linear. Therefore, our confluence proof for

pcf N will be based on the original development of [6]. We then use the linearity of R

again to prove that pcf itself is confluent; for this argument, linearity is essential.

The following lemma allows us to consider algebraic reductions only on terms in

pcf N
0 normal form. By Theorem 2.4.2, every labelled term M has a unique pcf N0

normal form, which we refer to as pcf N0 (M).

Lemma 2.4.3

1. If M
r
→ N for r ∈ R, then pcf N

0 (M)
r
→→ pcf N0 (N);

2. If M
pcf N

−→→ N , then pcf N
0 (M)

R
→→ pcf N

0 (N).

Proof.

1. If the rule r is s→t and the variables in s are x̄ ≡ x1 . . . xn, then there must

be a context C[] and terms Q1 . . . Qn such that M ≡ C[{Q̄/x̄}s] and N ≡

C[{Q̄/x̄}t]. Let z be a new variable of the same type as (λx̄: σ̄. s), and define

P ≡ pcf N
0 (C[zQ̄]). Then

M
pcf N0←←− {(λx̄: σ̄. s)/z}C[zQ̄]

pcf N0−→→ {(λx̄: σ̄. s)/z}P,

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 20

and similarly N
pcf N0←→ {(λx̄: σ̄. t)/z}P . Observe that, since zQ̄ is of base type,

every occurrence of z in P must be at the head of a subterm of base type; it is

then easy to show by induction on the structure of such terms that

pcf N
0 ({(λx̄: σ̄. s)/z}P)

r
→→ pcf N0 ({(λx̄: σ̄. t)/z}P).

Since pcf N0 (M) ≡ pcf N
0 ({(λx̄: σ̄. s)/z}P) and similarly for pcf N0 (N), we are

done.

2. Follows directly from 1 by induction on the length of the reduction.

Lemma 2.4.4 R-reduction is confluent on labelled terms in pcf N
0 normal form.

Proof. By induction on the length of a normal form M we show that R is confluent

from M . In the base case, M is a variable or fix 0
σ, whence no R-reductions apply, or

M is an algebraic constant, for which we know R is confluent.

Now assume that confluence holds from all pcf N0 normal forms strictly shorter

than M . If M is an abstraction or a pair, then R-reduction can only affect a proper

subterm of M , so confluence holds by the induction hypothesis. The remaining case is

that M consists of some sequence of applications and projections of a head variable or

constant h, i.e., M ≡ E [h] for some elimination context E [], where all the application

arguments P1 . . . Pn are pcf N0 normal forms strictly shorter than M .

If h is a variable or fix 0
τ , thenR-reduction will only take place within the arguments

P1 . . . Pn, so confluence holds by the induction hypothesis. If h is an algebraic con-

stant, then because of its type E [] must consist entirely of applications, so M ≡ hP̄ .

If M is not of base type then we are in the same situation as if h were a variable, so

confluence holds.

Finally, if M ≡ hP̄ is of base type, then it may be decomposed as {Q̄/x̄}s, where

s is algebraic, x1 . . . xm are new variables of base type, and Q1 . . . Qm are pcf N0 normal

forms of base type, each with a variable or fix 0
σ in head position. Breazu-Tannen calls

this an algebraic trunk decomposition in [7]. If M is algebraic then confluence holds

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 21

by assumption about R. Otherwise, we notice that Q1 . . . Qm and s are all strictly

shorter pcf N
0 normal forms, and that M

R
→→ N only if N ≡ {R̄/x̄}t, where s

R
→→ t

and Qi
R
→→ Ri, for i = 1 . . .m. We may prove this by induction on the length of the

reduction M
R
→→ N , noting that because we assume that R is left-linear we avoid the

problem with this step which was pointed out in [7]. Thus confluence holds from M

by the induction hypothesis, and the induction is complete.

These two lemmas now let us prove that pcf N is confluent. As a corollary, we use

the linearity of the rules in R to show that pcf itself is confluent.

Theorem 2.4.5 pcf N -reduction is confluent on all labelled PCF terms.

Proof. For any terms M , N , and P , if N
pcf N

←←−M
pcf N

−→→ P , then by Lemma 2.4.3 we

know that

pcf N
0 (N)

R
←← pcf N

0 (M)
R
→→ pcf N

0 (P).

Lemma 2.4.4 then asserts that there is a Q such that

pcf N
0 (N)

R
→→ Q

R
←← pcf N

0 (P).

Since N
pcf N

−→→ pcf N
0 (N) and P

pcf N

−→→ pcf N0 (P), we thus have that N
pcf N

−→→ Q
pcf N

←←− P .

Corollary 2.4.6 pcf -reduction is confluent on all PCF terms.

Proof. For any terms M , N , and P , if N
pcf
←←− M

pcf
−→→ P , then there are corre-

sponding labelled terms M∗, N∗, and P ∗ such that N∗ pcf N

←←−M∗ pcf N

−→→ P ∗. To see this,

let m be the length of the longer of the two pcf -reduction sequences from M , and

form M∗ by labelling each fixσ in M with m; then mimic the two reductions from

M by replacing (fix) steps with (fixn) steps, for appropriate choices of n. Now, since

pcf N is confluent, N∗ and P ∗ must have a common reduct Q∗; erasing the labels in

Q∗ gives a term Q such that N
pcf
−→→ Q

pcf
←←− P , hence pcf is confluent.

The proof of this corollary uses linearity in asserting that a single labelled term

M∗ will permit both reductions from M to be mimicked. This property fails in

the presence of non-linear rules because a reduction step may then require that two

subterms have identical labels. An example of the problem, using (sp), is the term

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 22

M∗ ≡ 〈π1(fixm
σ I), π2(fixn

σ I)〉, where I ≡ (λx: σ. x), and σ is a product type. Consider

the following two reduction sequences:

M
sp
−→ fixm

σ I

and
M

fixn

−→ 〈π1(fixm
σ I), π2((λf : σ→σ. f(fixn−1

σ f))I)〉
β
−→→ 〈π1(fixm

σ I), π2(fixn−1
σ I)〉

sp
−→ fixm

σ I.

In the first case, the (sp) step requires that m = n, while in the second case we must

have m = n− 1, hence there is no such M∗.

2.5 Postponement

In this section, we analyze the reduction system pcf η,sp . Our main technical tool is

a postponement theorem for (η) and (sp), which is proved following the pattern for

postponement of (η) in the untyped lambda calculus [1]. While (sp) postponement

fails for untyped lambda terms (as noted in the introduction), we are able to prove

postponement for typed PCF terms. The main “trick” in the proof is to find the

correct analogy between sp-reduction and η-reduction. The postponement theorem

will be used in the next section to show that pcf is sufficient to compute the pcf η,sp

normal form of any program, i.e., any closed term of base type (in fact, programs may

have free variables as long as they are of algebraic type, since they act like algebraic

constants with no associated reductions).

To show postponement of (η) and (sp) for pcf η,sp , we will use the related system

pcf lab , in which η- and sp-redexes are represented as labels. We add term formation

rules to allow Mη whenever M is a term of function type, and M sp whenever M is of

product type; substitution is then extended in the natural way. We also define two

functions from labelled to unlabelled terms: | · | and ϕ. The action of | · | is simply to

erase all the labels, while ϕ replaces labelled subterms with the corresponding redexes:

ϕ(Mη) = (λx: σ. ϕ(M)x) if M : σ→τ , and ϕ(M sp) = 〈π1ϕ(M), π2ϕ(M)〉. Finally, the

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 23

reduction system pcf lab is defined by lifting pcf to labelled terms and adding the

following contractions:

(act η) MηN −→MN

(act sp) πiM
sp −→ πiM, for i = 1, 2

(int η) (λx: σ.M)η −→ (λx: σ.M)

(int sp) 〈M,N〉sp −→ 〈M,N〉.

The effect of the first two rules is to simulate the reduction of “active” η- and sp-

redexes, i.e., those that are also top-level constituents of β- or π-redexes. The other

two rules mimic the situation where an η- or sp-redex is reduced internally by (β) or

(π), e.g.,

λx: σ. (λx: σ.M)x
β
−→λx: σ.M ;

these two rules are not necessary for the postponement proof, but they will be needed

in the next section and there is no harm in adding them here.

We will now prove a series of lemmas relating pcf lab to the unlabelled systems.

The first three are easy inductions, either on the length of a reduction or on the

structure of a term.

Lemma 2.5.1 If P
pcf lab

−→→ P ′, then ϕ(P)
pcf
−→→ ϕ(P ′).

Proof. This follows by an easy induction on the length of the pcf lab reduction.

The (act η) steps may be simulated in the unlabelled reduction by (β) steps, since

the η-redexes involved are active; similarly, the (act sp) steps become (πi) steps. The

two internal rules may also be simulated, because β- and πi-redexes are created by ϕ.

Any other reduction step corresponds directly to a similar reduction on the unlabelled

term.

Lemma 2.5.2 ϕ(P ′)
η,sp
−→→ |P ′|.

Proof. Another easy induction, this time on the structure of P ′. Each η- or sp-redex

introduced by ϕ can obviously be reduced to get to |P ′|.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 24

Lemma 2.5.3 If |P |
pcf
−→→ N , then there exists a term P ′ such that P

pcf lab

−→→ P ′ and

|P ′| ≡ N .

Proof. The pcf reduction to N can be simulated on P because whenever a label is

in the way it must indicate an active redex, so it can be erased by one of the extra

rules in pcf lab .

Lemma 2.5.4 If M
η,sp
−→ M ′ pcf

−→→ N , then there exists a term Q such that M
pcf
−→→

Q
η,sp
−→→ N .

Proof. Either M ≡ C[(λx: σ. Lx)] and M ′ ≡ C[L], or M ≡ C[〈π1L, π2L〉] and

M ′ ≡ C[L], for some context C[] and term L. In the first case, take P ≡ C[Lη]; in

the second case, take P ≡ C[Lsp]. Then M ≡ ϕ(P) and M ′ ≡ |P |. By Lemma 2.5.3,

there is a term P ′ such that P
pcf lab

−→→ P ′ and |P ′| ≡ N . Then by Lemma 2.5.1 we find

that M ≡ ϕ(P)
pcf
−→→ ϕ(P ′). Since by Lemma 2.5.2, ϕ(P ′)

η,sp
−→→ |P ′| ≡ N , we may

take Q ≡ ϕ(P ′).

From this lemma we may now prove the postponement of (η) and (sp) in pcf η,sp .

Theorem 2.5.5 If L
pcf η,sp
−→→ N , then there is a term M such that L

pcf
−→→ M and

M
η,sp
−→→ N .

Proof. Given a reduction sequence from L to N , we may use the previous lemma

to push all the (η) and (sp) steps to the end.

In the special case that N is a program in pcf η,sp normal form, which we refer to

as a result , we find that the reductions (η) and (sp) are unnecessary:

Corollary 2.5.6 If L
pcf η,sp
−→→ R and R is a result, then L

pcf
−→→ R.

Proof. By Theorem 2.5.5 there is an M such that L
pcf
−→→ M

η,sp
−→→ R; we will

proceed by induction on the length of the reduction from M to R. If the last step

in this reduction is P
η,sp
−→ R, with Q the redex in P and Q′ its contractum in R,

then assume first that Q is passive. Thus Q′ is of non-base type and it cannot be

the head of an application or the object of a projection; if it is in the body of an

abstraction or a pair, then there is a larger subterm of R that is of non-base type.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 25

Consider the largest such enclosing subterm of non-base type (possibly Q′ itself).

Since R is a normal form of base type, this subterm must be in the argument of an

application. But algebraic constants only take base type arguments, and the presence

of a fix contradicts R being in normal form, so the head of the application must be

a variable. This is also impossible, because there are no free variables in R (except

perhaps of algebraic type), and a surrounding abstraction would give yet a larger

subterm of non-base type. Hence Q must be active, so P
pcf
−→→ R and we may use

Lemma 2.5.4 to push this step in front of the (η) and (sp) steps; it is easy to see by

the form of Q that this will not increase the number of remaining (η) and (sp) steps.

2.6 The result property

Although pcf η,sp is not confluent, there are other properties of reduction that might

be considered as plausible substitutes. In this section, we will show that pcf η,sp has a

weaker result property. To put this property in perspective, we might consider three

general properties of reduction, in order of decreasing strength. These are confluence,

the so-called normal form property of [29], which says that if Γ ⊲ M ↔ N : σ and

N is a normal form, then M →→ N , and the uniqueness of normal forms. It is not

hard to see that confluence implies the normal form property, and the normal form

property implies that each term has at most one normal form. While Klop and de

Vrijer have shown that the normal form property fails in untyped lambda calculus

with surjective pairing [29], we will show that typed PCF has a modified version of

this property, which we call the result property.

The result property, proved in Theorem 2.6.4 below, states that if M is pcf η,sp

convertible to a result N (see Section 2.5), then M is pcf η,sp reducible to N . Since

conversion is equivalent to provable equality in the full PCF proof system, it follows

by Corollary 2.5.6 that if a term M is provably equal to a result N , then M
pcf
−→→ N .

Furthermore, it follows from the result property and postponement that (η) and (sp)

are sound equational rules for reasoning about pcf observational congruence. Thus,

when combined with other properties of pcf η,sp and pcf reduction, the result property

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 26

not only gives a certain coherence to pcf η,sp reduction, but relates provable equality

using (η) and (sp) to program execution without these “non-computational” rules.

We will prove the result property using a series of lemmas similar to those used

to show postponement in Section 2.5. The same labelled system pcf lab will be used,

and here the internal rules will be important.

Lemma 2.6.1 If P
pcf lab

−→→ P ′, then |P |
pcf
−→→ |P ′|.

Proof. This is almost trivial; any of the extra reductions in pcf lab not in pcf may

be ignored because all of the labels have been erased.

Lemma 2.6.2 If ϕ(P)
pcf
−→→ R and R is a result, then there exists a term P ′ such

that P
pcf lab

−→→ P ′ and ϕ(P ′) ≡ |P ′| ≡ R.

Proof. Since there are no η- or sp-redexes in R, there will be no labels left in

P ′. Therefore, we will have ϕ(P ′) ≡ |P ′|, and every descendent of a redex in ϕ(P)

corresponding to a label in P must eventually either pcf -reduce or be erased. The pcf -

reductions will correspond to cases where a redex either is active or reduces internally;

they may thus be simulated by the labelled reduction. One complication comes in

simulating the reduction step 〈π1M,π2M〉→〈π1M
′, π2M〉; there is no reduction on the

corresponding labelled term M sp that matches this, but since pcf is confluent and R

is in normal form, we know that the two components of the pair will eventually reduce

to the same normal form (or the entire pair will be erased), so we may arbitrarily

choose to follow only reductions to the first component.

The other situation where we must be careful is when there are rules in R of the

form (fM1 . . .Mk−1x)→N ; i.e., rules that accept an arbitrary rightmost argument.

If P ≡ (fM1 . . .Mk−1)
η, then ϕ(P)→(λx: b. N), but P does not pcf lab-reduce. This

case is ruled out by the condition that R be a result, however, because reasoning

similar to that in the proof of Corollary 2.5.6 shows that algebraic constants in R

must always be at the head of subterms of base type. Hence we may simulate the pcf

reduction in the labelled system.

Lemma 2.6.3 If M
η,sp
−→M ′ and M

pcf
−→→ R, where R is a result, then M ′ pcf

−→→ R.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 27

Proof. Take P as in Lemma 2.5.4, so that M ≡ ϕ(P) and M ′ ≡ |P |. By Lemma

2.6.2, there is a term P ′ such that P
pcf lab

−→→ P ′ and ϕ(P ′) ≡ |P ′| ≡ R. By Lemma 2.6.1

we find that M ′ ≡ |P |
pcf
−→→ |P ′|, so we are done.

Now we may prove the result property for pcf .

Theorem 2.6.4 If Γ ⊲ N
pcf η,sp
←→ R : σ and R is a result, then N

pcf
−→→ R.

Proof. We will prove that if L
pcf η,sp
−→→ N and L

pcf η,sp
−→→ R, where R is a result, then

N
pcf
−→→ R; this is easily seen to be equivalent. By the postponement theorem there is

a term M such that L
pcf
−→→M

η,sp
−→→ N ; by the corollary to postponement, L

pcf
−→→ R.

Now, since pcf is confluent and R is in normal form, we know that M
pcf
−→→ R. Using

Lemma 2.6.3 once for each reduction step from M to N , we find that N
pcf
−→→ R.

As a corollary to this theorem, we will show that the equational forms of (η)

and (sp) are sound for reasoning about observational congruence. First we define a

program context for a given type σ and variable assignment Γ to be a context P[]

such that P[M] is a program whenever Γ ⊲ M : σ. We say that two terms M and N

of the same type σ and variable assignment Γ are observationally congruent , written

Γ ⊲ M ≃ N : σ, if for every program context P[] for σ and Γ, P[M] pcf -reduces to a

result R iff P[N]
pcf
−→→ R. In other words, M and N are completely interchangeable

when computing the result of a program.

Corollary 2.6.5 The equational axioms (η)eq and (sp)eq are sound for ≃.

Proof. To show that (η) is sound, we need to show that for any term M of

type σ→τ over a variable assignment Γ, with x a variable not free in M , we have

Γ ⊲ (λx: σ.Mx) ≃ M : σ→τ . If P[] is a program context for σ→τ and Γ, then

obviously Γ ⊲P[(λx: σ.Mx)]
pcf η,sp
←→ P[M] : σ; if P[(λx: σ.Mx)] pcf -reduces to a result

R, then we also have that Γ ⊲P[M]
pcf η,sp
←→ R : σ, and by the previous theorem we find

that P[M]
pcf
−→→ R. The same argument in reverse shows that if P[M]

pcf
−→→ R, then

P[(λx: σ.Mx)]
pcf
−→→ R. Similar reasoning shows that (sp) is sound.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 28

2.7 Expansion

An alternate approach to avoiding the non-confluence of the full reduction system was

suggested to the author after the rest of this chapter was originally written. If, instead

of directing the extensional axioms from left to right to obtain the contraction rules

(η) and (sp), one orients them from right to left, then the resulting expansion rules

are considerably better-behaved. We will refer to the reduction system consisting of

pcf plus the two expansion rules

(η)exp M −→ λx: σ.Mx, for x not free in M

(sp)exp P −→ 〈π1P, π2P 〉

as pcf exp. Naturally, for the right-hand sides of these rules to be well-typed, M must

be a term of function type (with argument type σ) and P must be a term of product

type.

At first glance, using the expansion forms of these rules might seem worse than

the previous contraction rules, since they allow infinite reduction sequences such as

f −→ λx: σ. fx −→ λx: σ. (λy: σ. fy)x −→

However, in the third term of this sequence we have created a β-redex which, if

reduced, will return the sequence to λx: σ. fx. In general this will be true — after

some point in a sequence of expansion steps any further expansions will be reversible.

If we restrict application of the expansion steps to cases where no β- or π-redexes

are created, then such infinite reductions will be avoided. More formally, we will

take an η-expansion redex to be a subterm M of function type which is neither an

abstraction nor the head of an application, and an sp-expansion redex to be a subterm

P of product type which is neither a pair nor the object of a projection.

It is not difficult to prove that pcf exp is confluent, following the procedure used

in Section 2.4. First we may show that pcf N
exp,0, the system with labelled fixed-

point constants and no algebraic rules, is confluent and strongly normalizing, either

by adapting the logical relations proof discussed previously, or by modifying the

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 29

proof for a similar system (with iteration instead of labelled fix -reduction) given by

Jay [27], which is based on Girard’s “candidats de reducibilité.” The normal forms

in this strongly normalizing system are known as long normal forms; for example,

the long normal form of a variable f : ρ→σ × τ , where σ and τ are base types, is

lnf (f) ≡ λx: ρ. 〈π1(fx), π2(fx)〉.

Using long normal forms instead of pcf N0 normal forms, Breazu-Tannen’s proof

goes through as before to establish that pcf N
exp is confluent, provided R is a confluent

set of linear algebraic rules. Since the expansion rules are linear, there is then no

problem extending this result as above to show that pcf exp itself is confluent.

Theorem 2.7.1 The reduction system pcf exp is confluent.

Since pcf exp is confluent, we immediately find that it satisfies the normal form

property.

Corollary 2.7.2 If Γ ⊲M
pcf exp
←→L : σ (or, equivalently, Γ ⊲M

pcf η,sp
←→ L : σ), where L is

a long normal form, then M
pcf exp
−→ L.

Postponement does not hold in general for the expansion rules. For example,

consider the reduction sequence

Ip
spexp
−→〈π1(Ip), π2(Ip)〉

β
−→〈π1p, π2(Ip)〉,

where I ≡ λx: σ × τ. x. The sp-expansion must happen first since the β-contraction

only affects one component of the pair. It is not enough to require that the reduction

sequence end in a normal form, either. Consider the system with the algebraic rule

r: zero x −→ 0; in the sequence

zero
ηexp
−→λx: nat . zero x

r
−→λx: nat . 0,

the final term is in normal form, but the η-expansion step must precede the algebraic

step because it creates the algebraic redex (note that we only disallow η-expansions

which create β-redexes).

Postponement of the expansion rules does hold for reduction sequences ending in

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 30

results. However, just as in Corollary 2.5.6, when the final term is a result, all of the

extensional steps disappear:

Theorem 2.7.3 If M
pcf exp
−→→R, where R is a result, then M

pcf
−→→ R.

Proof. This is just a special case of the result property for pcf .

Thus we find again that pcf is the proper reduction system for evaluating pro-

grams; also, by adding the extensional rules as expansions, we may find normal forms

for arbitrary terms which have them.

2.8 Completeness of leftmost reduction

If the set R of algebraic rules satisfies some additional constraints, then we may

prove that the leftmost reduction strategy is complete with respect to finding pcf (or

pcf exp) normal forms. The extra constraints are thatR be terminating and left-normal

(which will be defined below). This result is similar to one obtained by Klop [28], who

proves that leftmost reduction is normalizing for the untyped lambda calculus plus

any left-normal, regular term rewriting system. For a term rewriting system to be

regular the rules must be linear and non-overlapping; we take the alternate approach

of accepting any confluent set of linear algebraic rules, as long as they are terminating.

Our proof is made simpler by this assumption of termination, as well as the isolation

of non-termination in the base language to the fixed-point constants; also, we do not

pass through the intermediate step of a general standardization theorem.

An algebraic rule is left-normal if all the variables in the left-hand side of the rule

appear to the right of all the constants. For example, all of the rules given in Section

2.3 for natural numbers and booleans are left-normal. If we had chosen to permute

the arguments of the conditional so that the test was at the end, i.e., so that the

reduction rules would be

cond M N true −→ M

cond M N false −→ N,

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 31

then we would not have had a left-normal set of rules. Intuitively, if we have left-

normal rules, then we only need to evaluate the arguments of an algebraic term from

left to right; it will never be the case that skipping an argument and evaluating one

to its right will create an algebraic redex involving the skipped term. In many cases,

obtaining left-normal rules is simply a matter of permuting arguments; in some other

cases, we may obtain left-normal rules by introducing auxiliary function symbols.

For example, consider the following set of rules, where the value of the first argument

determines which of the other two arguments is to be evaluated:

f true true N −→ true

f true falseN −→ false

f falseM true −→ false

f falseM false −→ true.

An equivalent left-normal system is

f trueM N −→ M

f falseM N −→ not N

not true −→ false

not false −→ true.

This is just the process of determining the sequentiality index of the function defined

by the algebraic rules (see [3]) and rearranging arguments so that the index is always

the leftmost unevaluated argument. If a function is inherently non-sequential then

we will not be able to find a left-normal set of rules; the classic example is the parallel

or function, por :

por true N −→ true

por M true −→ true

por false false −→ false

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 32

The first lemma we will need formalizes a special case of our intuition about the

creation of pcf N redexes when the algebraic rules are left-normal.

Lemma 2.8.1 If the rules R are left-normal, then whenever the leftmost redex R

in a labelled term M is contracted by a rule of pcf N to obtain a term N , all of the

non-algebraic subterms of M to the left of R will also be to the left of the leftmost

redex of N .

Proof. Suppose that P is a non-algebraic subterm of M to the left of R and that

contraction of R creates a redex S in N which is to the left of P . No (β), (π) or

(fix) rule could be created so far to the left of R, so S must be an algebraic redex

which contains the reduct of R, and hence also contains P . The only way an algebraic

redex can have a non-algebraic subterm P is if the rule contains a variable covering

that position; since the rules are left-normal, this means that the rule also contains

a variable covering the position of the reduct of R, which contradicts the fact that S

was created by the contraction of R. Therefore P must be to the left of the leftmost

redex in N .

We will also need the fact that pcf N is strongly normalizing whenever the set of

rules R is terminating. This can be seen as a special case of a theorem of Breazu-

Tannen and Gallier [7], where they consider adding a terminating set of algebraic

rules to the polymorphic lambda calculus, including the (η) rule. The proof we give

is adapted from a simplification of theirs.

Lemma 2.8.2 If the rules of R are terminating, then pcf N is strongly normalizing.

Proof. We will extend the logical relations proof of strong normalization for pcf N0

given in Section 2.4. The only significant case we need to consider is showing that

SN (E []) implies SN ρ(E [f]), where f is an algebraic constant. That is, if strong

normalization in pcf N holds from N1, . . . , Nk, then we need to show that it holds from

M ≡ fN1 . . . Nk. If the arity of f is greater than k then we are done, so assume that

fN1 . . . Nk is of base type. Since each term Ni is strongly normalizing, and the rules in

R are linear, the only way to have an infinite reduction from M is if there is an infinite

reduction from fP1 . . . Pk, where each Pi is the normal form of the corresponding Ni.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 33

Now, an algebraic reduction cannot create new pcf N
0 redexes, so this infinite reduction

must be all algebraic, contradicting the fact that R is terminating. Therefore M is

strongly normalizing.

Using these two lemmas we may now prove the main theorem of this section:

Theorem 2.8.3 If M
pcf
−→→ N , where N is a normal form and the rules in R are

confluent, terminating, left-linear, and left-normal, then there is a pcf reduction from

M to N that reduces the leftmost redex at each step.

Proof. If M
pcf
−→→ N then using the linearity of the rules in R we may find a

labelled reduction M∗ pcf N

−→→ N∗ such that M∗ and N∗ erase to M and N , respectively.

Since pcf N is confluent and strongly normalizing, we may find an equivalent leftmost

reduction from M∗ to N∗. Now, the only way the erasure of this leftmost reduction

will not be a leftmost pcf reduction is if there is some subterm fix 0 to the left of

the leftmost redex at some step in the labelled reduction. But by Lemma 2.8.1, this

subterm must also be present in N∗, which contradicts the fact that N is a normal

form. Therefore we have a leftmost reduction from M to N .

Corollary 2.8.4 If a program P is provably equal to a result R, and the rules in R

are confluent, terminating, left-linear, and left-normal, then the leftmost pcf reduction

from P will reach R.

Proof. Obvious from the theorem and the result property.

In particular, the algebraic rules for natural numbers and booleans given in Section

2.3 satisfy all the restrictions, hence the leftmost reduction strategy will find results of

programs over nat and bool . This gives a correspondence between nondeterministic

reduction and the deterministic evaluation strategy used in the semantic study of

[43], providing a full correspondence between axiomatic, operational and denotational

semantics of PCF.

All the results of this section hold for the system with expansion rules. In par-

ticular, if any term is provably equal to a long normal form in the full proof system

with an appropriate set of algebraic rules, then leftmost pcf exp reduction will find

that normal form.

CHAPTER 2. EXTENSIONALITY IN PCF WITH ALGEBRAIC TYPES 34

2.9 Conclusion

Since the full reduction system pcf η,sp with (η) and (sp) is not confluent, we consider

the more limited system pcf to be more appropriate for PCF execution. The system

pcf includes fixed-point rules (fix), lambda calculus rules (β) for function calls and

(π) for pairs, and any set R of left-linear, confluent algebraic rules. We have shown

that pcf reduction is confluent and demonstrated several connections between pcf and

pcf η,sp . The first is that (η) and (sp) rules may be postponed in pcf η,sp reduction, and

so whenever a closed term of base type pcf η,sp reduces to normal form, this reduction

may be accomplished without (η) or (sp). Thus, if we consider programs to be closed

terms of base type (or any product of such types), pcf is equivalent for the purpose

of program execution to the apparently stronger but non-confluent pcf η,sp . We also

prove a result property of pcf η,sp in Section 2.6, from which it follows that (i) whenever

a term is provably equal (in the full system) to a result, the term reduces to this result

by pcf reduction, and (ii) all equational rules, including (η)eq and (sp)eq , are sound for

pcf observational congruence. We consider adding expansion rules for (η) and (sp),

showing that the resulting system is confluent and adequate for finding long normal

forms of arbitrary terms. We also show that a leftmost reduction strategy is complete

for pcf reduction if the algebraic rules satisfy the additional constraints that they are

terminating and left-normal. In summary, these technical results suggest that while

the full equational proof system is a natural “axiomatic semantics” for PCF, a more

limited reduction system has more desirable technical properties and seems suitable

as a corresponding operational semantics.

One open problem is to extend our confluence theorem to include reduction rules

for non-algebraic terms. For example, we might like to give reduction rules for the

evaluation of some higher-order function, and be sure that the resulting extension of

pcf is confluent. Presumably our current proof already applies to some cases of this

form, but we have not yet done a careful analysis.

Chapter 3

Inductive and Projective Types

In this and the next chapter we consider two related typed λ-calculi which allow

the construction of types as fixed points of recursive type expressions. The smaller

system, λµν , restricts the recursion so that all functions definable in the system are

total. It is still quite powerful, however; it is more expressive than Gödel’s system

T, since not only are all the functions that are provably total in Peano arithmetic

definable, but also many that are not. The larger calculus, λ⊥ρ, contains all of the

types and terms of λµν , plus it allows more general recursive types by including a

lifting constructor to explicitly mark the types where non-termination is allowed;

as a result, all computable partial functions are definable. By separating out the

recursive types which only allow bounded computations, we obtain a finer resolution

of where non-termination is possible than that provided by other type systems. In

particular, we compare our work to Plotkin’s versions of PCF [43, 44] and Hagino’s

Categorical Data Types [21, 22]. Indeed, our work may be viewed as an extension

of Hagino’s language, which is roughly equivalent in expressive power to λµν , into

a system equivalent in power to PCF. The existence of a clean category theoretic

semantics for the language has been the motivating force behind a number of design

decisions; we will also discuss these choices and some of the alternatives.

When trying to give a categorical semantics to a functional language with recursion

as well as product and sum types, it is well-known that something must be given up.

Specifically, if a cartesian closed category has an initial object 0 (the identity for the

35

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 36

sum) and if there is a solution to the equation X ∼= X→0, then every object will

be isomorphic and all arrows will be equal.1 The standard solution is to drop the

requirement of full categorical sums. For example, the category of complete pointed

partial orders and total continuous functions (CPPO) has a categorical product and

solutions of all recursive domain equations (RDEs), but only has the “coalesced” sum,

which identifies the bottom elements of the summands — this loss of information leads

to the sum not being “extensional,” in the sense of every element of the sum type being

uniquely expressible as the injection of an element of one of the summands. On the

other hand, Plotkin’s category CPO⇀ of complete (not necessarily pointed) partial

orders and partial continuous functions has extensional sums and solutions to all

RDEs, but the cartesian product is not the categorical product; there is a categorical

product, but it is not adjoint to the function space functor. A third alternative, which

we adopt, is to drop the requirement that every RDE have a solution; an example of

this approach is the category CPO of complete partial orders and total continuous

functions, which is cartesian closed and has full categorical sums, but only a restricted

class of RDEs has solutions. It is this last category which provides the motivation for

the calculi we study here.

In the approach we take to giving a categorical model for a typed functional

language, the objects of the category represent the types and the arrows represent

terms, where the source gives the type of the free variables and the target gives

the resulting type of the term. A type expression with a free type variable then

becomes an endofunctor, with the action of the functor on an object being given

by substitution of the corresponding type for the free variable (we will describe the

action on an arrow later). Given a type expression σ with a free type variable t,

corresponding to a functor F , a solution to the RDE t = σ is a type τ such that τ

is isomorphic to σ with τ substituted for t (written τ ∼= {τ/t}σ). That is, a solution

1Using terms in the language we develop below, if we have a type X such that X ∼= X→0, then
the closed term ω ≡ λx: X. unfoldX xx has type X→0. Therefore, the term Ω ≡ ω(foldX ω) is a
closed term of type 0 (which is essentially a typed version of the classical combinator Ω, the simplest
term with no normal form). It is then easy to see that the terms λx: 1. Ω and λy: 0. 3 are inverses,
hence 0 ∼= 1; it follows that every type A is isomorphic to 0, since A ∼= A × 1 ∼= A × 0 ∼= 0. For
another approach to the proof, see for example [31], section I.8.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 37

is an object X such that X ∼= FX, i.e., a fixed point of F . Common notation for

the type τ so constructed is µt. σ; we will often write µF when we are particularly

thinking of σ as a functor.

In a category with an initial object 0 and colimits of ω-chains, a fixed point of an

endofunctor F which preserves such colimits (i.e., an ω-cocontinuous functor) may

be found as the colimit of the chain

0
2
−→ F0

F2
−→ F 20

F 2
2

−→ . . . ,

where 2 is the unique arrow from 0 to F0. The fixed point µF found by this method

is the least one, in the sense that it is the initial object in the category of F -algebras

(whose objects are arrows f :FA→A in the original category; an arrow between f and

g:FB→B is an arrow h:A→B such that f ; h = Fh; g). Since a colimit is also known

as an inductive limit, we refer to the types constructed in this manner as inductive

types. Dually, in a category with a terminal object 1 and limits of ω-chains, we find

the greatest fixed point (which is terminal in the category of F -coalgebras) of an

ω-continuous endofunctor by taking the (projective) limit of

1
3
←− F1

F3
←− F 21

F 2
3
←− . . . ,

where 3 is the unique arrow from F1 to 1. Thus, the projective types are the greatest

solutions to their corresponding RDEs; we write νt. σ or νF for these.

The language λµν studied in this chapter contains type constructors for the induc-

tive and projective types as well as function spaces and finite sums and products. The

class of functors for which we will be able to find fixed points is those which can be

built from these constructors and which are strictly covariant in their argument (that

is, the argument can only be used to the right of any function space constructors; the

functor FX = ((X→A)→B) is not allowed). All the functors in this restricted class

are ω-(co)continuous over Set, the category of sets and total functions, so finding a

model for λµν will not require the machinery of cpo’s that will be used in the next

chapter.

We have already mentioned the work of Hagino above; his language CPL [21]

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 38

and the related typed λ-calculus with categorical type constructors [22] start from

the very general concept of F,G-dialgebra and, through various computationally-

imposed restrictions, result in a language with a type system equivalent to that of λµν ,

although with a more elegant (but less practical) notation. More recently, a language

almost identical to λµν has been studied by Greiner [19]; his primary concern is to

show examples of types and programs that may be written in the language. Greiner

also discusses the problem that arises when inductive and projective (which he calls

co-inductive) types are simulated in a language such as Girard’s system F, namely

that the types are no longer extensional and so certain algorithms (most famously,

the constant-time predecessor operation on the Church numerals) are not expressible.

He makes the same observation which we make (independently) in Section 3.4, that a

simple addition to our language allows us to express these algorithms with the desired

efficiency.

3.1 Syntax of the language λµν

In this section we will describe the syntax for the types and terms of λµν . We will

continue to use σ, τ , and υ as metavariables for type expressions, s and t for type vari-

ables, M and N for arbitrary terms, and x for (regular) variables. Type expressions

may be any of the following:

t | 0 | 1 | σ + τ | σ × τ | σ→τ | µt. σ | νt. σ.

The types of the language will be the closed type expressions, i.e., those with no free

type variables. Thus, the expression t is not a type on its own, but may be used only

as a bound variable in the body of a µt or νt constructor. The type 0 is to be thought

of as the empty type; it is the identity for the sum, that is, 0 + σ ∼= σ + 0 ∼= σ for

any type σ. The type 1 has just one element; it is the identity for the product, ×.

The unit type also serves as a left identity for the function space constructor, since

1→σ ∼= σ. We will follow the same grouping conventions as in the previous chapter,

adding the convention that + associates to the left and has a precedence between

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 39

that of × and that of →; thus, the fully parenthesized form of 1 + s + t × t→s is

((1 + s) + (t× t))→s.

Not every type expression σ may be the body of an inductive (µ) or projective (ν)

type — the bound type variable t may only occur strictly positively in σ, that is, it

may not appear in any subterm on the left of an arrow. This is stronger than saying

that σ must be covariant in t, which only requires that t always occur positively,

i.e., to the left of an even number of arrows. We will relax this restriction somewhat

in the next chapter, but the relaxed condition adds nothing to the types we can

define in λµν . What we are avoiding by demanding strict positivity are types such as

µt. ((t→bool)→bool), where bool ≡ 1 + 1; since our interpretation of a type in λµν is

a discrete cpo, i.e., a set, there can be no solutions to such equations by cardinality

considerations (the cardinality would be some κ such that κ = 22κ

, which is impossible

in standard set theory).

As for PCF in the previous chapter, we give an inference system for typing as-

sertions Γ ⊲ M : σ for well-formed terms of λµν . We start with the rules for variables,

which are the same as for PCF:

(var) x: σ ⊲ x: σ

(add var)
Γ ⊲ M : σ

Γ, x: τ ⊲ M : σ.

The categorical interpretation of a term Γ ⊲ M : σ is an arrow from γ to σ, where γ

is (the object corresponding to) the type σ1 × . . . × σn if Γ is the type assignment

{x1: σ1, . . . , xn: σn}. According to this interpretation, the (var) rule gives the identity

arrow for σ. Composition of arrows is given by substitution — if f : γ→σ is the arrow

represented by Γ ⊲ M : σ and g: σ→τ is the arrow represented by x: σ ⊲ N : τ , then

their composition g ◦ f : γ→τ is given by the term Γ ⊲ {M/x}N : τ . The situation is

slightly complicated because we may wish to have more than one free variable in N ;

thus, if we have g′: γ′ × σ→τ corresponding to Γ′, x: σ ⊲ N : τ , then the substitution

Γ′,Γ⊲{M/x}N : τ represents the composite arrow g′◦(γ′×f): γ′×γ→τ . The (add var)

rule allows us to form the appropriate projections for this scheme of multiple free

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 40

variables to work, since if Γ ⊲ M : σ is the arrow f : γ→σ, then Γ, x: τ ⊲ M : σ is the

composite f ◦ πγ : γ × τ→σ, where πγ : γ × τ→γ is the projection which drops the last

component of type τ .

The constants and term constructors corresponding to the given type constructors

also come from the categorical interpretation of the types. The type 0 is meant to

represent an initial object, so there must be an arrow from 0 to any other type υ:

(0 Elim) ∅ ⊲2
υ: 0→υ.

The sum type σ + τ requires two injection arrows,

(+ Intro1) ∅ ⊲ ισ+τ
1 : σ→σ + τ

(+ Intro2) ∅ ⊲ ισ+τ
2 : τ→σ + τ,

as well as, for every pair of arrows with a common target, an arrow from the sum of

their sources into that target:

(+ Elim)
Γ ⊲ M : σ→υ, Γ ⊲ N : τ→υ

Γ ⊲ [M,N]: σ + τ→υ.

Dually, the type 1 represents a terminal object, and σ× τ is a product, so we get the

following axioms and rules:

(1 Intro) Γ ⊲3: 1

(× Elim1) ∅ ⊲ πσ×τ
1 : σ × τ→σ

(× Elim2) ∅ ⊲ πσ×τ
2 : σ × τ→τ

(× Intro)
Γ ⊲ M : σ, Γ ⊲ N : τ

Γ ⊲ 〈M,N〉: σ × τ.

Note that in the introduction rules for 1 and × the source of the arrows is Γ,

whereas the other constants and the elimination rules for 0 and + are given in a

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 41

“curried” form, i.e., the term created has a functional type corresponding to the

desired arrow type. This is a purely stylistic decision; we could have written the +

elimination rule, for example, as

(+ Elim ′)
Γ, x: σ ⊲ M : υ, Γ, y: τ ⊲ N : υ

Γ, z: σ + τ ⊲ (case z of ισ+τ
1 x.M, ισ+τ

2 y.N): υ;

the disadvantage of this approach is that we would have two basic constructions which

bind variables, which adds to the complexity of the system. Conversely, we could have

curried the 1 introduction rule as

(1 Intro ′) ∅ ⊲ unitυ: υ→1,

but then we would have no simple expression for a closed term of type 1 (the simplest

would be something like unit1→1 unit1). Finally, we write the other constants with

empty type assignments, which makes them arrows from 1, that is, elements of the

objects corresponding to their types; by using the (add var) rule we may construct

constant terms for any desired type assignment Γ. We could have taken this approach

for 3, but then its status as the unique arrow from a given type to the terminal object

would have been obscured. All of these design decisions are for the most part non-

issues because we are intending to work in a system where all of the extensional rules

hold, hence all of the necessary isomorphisms exist.

Continuing with the syntax of the language, we have the usual λ-abstraction and

application rules:

(→ Intro)
Γ, x: σ ⊲ M : τ

Γ ⊲ (λx: σ.M): σ→τ

(→ Elim)
Γ ⊲ M : σ→τ, Γ ⊲ N : σ

Γ ⊲ MN : τ.

In light of the above discussion of the categorical basis for the syntax, we observe

that abstraction is the process by which an arrow may be “curried” on one of its

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 42

free variables to obtain an internal arrow, i.e., an element of a functional type.

Application then provides the means of composing these internal arrows with other

terms; also, a combination of the variable rules and application has the effect of

“uncurrying” a function, e.g., x: 0 ⊲ 2
υx: υ is the uncurried form of the (0 Elim)

axiom.

Finally, we have the terms associated with the inductive and projective types. The

categorical interpretation of an inductive type µF (≡ µt. σ) is an initial F -algebra,

i.e., an arrow ϕ from F (µF) to µF such that for any other F -algebra f :F (X)→X

there is a unique F -algebra morphism hf :ϕ→f , that is, an arrow hf :µF→X such

that the following diagram commutes:

µF X-
hf

F (µF) F (X)-F (hf)

?

ϕ

?

f

.

In terms of their actions on values of a recursive type, the function ϕ “folds” up the

outermost level of a recursively defined value, while the function hf takes a value of

the type and iteratively applies f to each of its levels; this will become clearer when

we discuss the equations and give some examples. For now, we simply introduce

the following constants corresponding to ϕ and hf (actually, it τ
µF corresponds to

the function h which takes an arbitrary F -algebra f and produces the appropriate

morphism hf):

(µ Intro) ∅ ⊲ foldµF :F (µF)→µF

(µ Elim) ∅ ⊲ it τ
µF : (F (τ)→τ)→µF→τ.

Recall that we are using F (τ) as an abbreviation for {τ/t}σ, since we are treating the

type expression σ with free type variable t as an endofunctor F ; the unabbreviated

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 43

form of the (µ Elim) axiom would be

∅ ⊲ it τ
µt. σ: ({τ/t}σ→τ)→µt. σ→τ,

which is harder to read.

We have the dual situation for projective types. The interpretation of νF is a

terminal F -coalgebra, i.e., an arrow ψ: νF→F (νF) such that for every F -coalgebra

g:Y→F (Y) there is a unique arrow kg:Y→νF such that

F (Y) F (νF)-
F (kg)

Y νF-kg

?

g

?

ψ

commutes. In this case, the action of the function ψ is to “unfold” a value of a

recursive type by one level, and the function kg creates a new value of the recursive

type by bundling together the function g with a starting value from Y ; again, we will

give examples after discussing the equations. The constants corresponding to ψ and

k are

(ν Elim) ∅ ⊲ unfoldνF : νF→F (νF)

(ν Intro) ∅ ⊲ new τ
νF : (τ→F (τ))→τ→νF.

There are a number of abbreviations, or syntactic sugar , which we will use in the

following sections. The first is simply that we will omit sub- and superscripted type

information whenever it can reasonably be inferred. Likewise, we will often leave

implicit a description of the typing context Γ, and assume that one may be found

that allows the given term to be proven to have the desired type. For example, when

we say that we will write M ◦N : σ→υ as an abbreviation for (λx: σ.M(Nx)), where

M has type τ→υ, N has type σ→τ , and x does not occur free in either M or N ,

this assumes that M and N have the given types with respect to some common type

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 44

assignment. If M has type σ→σ, then we may write M (n) for the n-fold composition

(. . . (M ◦M) ◦ . . . ◦M); when n = 0, this becomes the identity idσ ≡ (λx: σ. x).

We have already been using the notation {M/x}N to indicate the result of substi-

tuting the term M for the free variable x in N , and similarly {σ/t}τ for substitution

in type expressions. We will not formalize this more here, except to note that λ is the

only variable binding operator for terms, and µ and ν are the only binding operators

for type expressions. All variables not in the body of an eponymous binding operation

are free; the set of free variables in a term M is denoted FV(M). As for PCF, we

have the following useful lemmas:

Lemma 3.1.1 If Γ ⊲ M : σ is well-formed, then every x ∈ FV(M) appears in Γ.

Lemma 3.1.2 If Γ ⊲M : σ is well-formed, then so is Γ′ ⊲M : σ for every Γ′ ⊂ Γ which

contains all the free variables in M .

Lemma 3.1.3 If Γ⊲M : σ and Γ, x: σ⊲N : τ are well-formed, then so is Γ⊲{M/x}N : τ .

We may form arbitrary finite products and sums as follows. The nullary product

is 3: 1 and the nullary sum is 2
υ: 0→υ. Given terms M1: σ1, . . . ,Mn: σn, for n > 1,

we may form the n-ary product 〈M1, . . . ,Mn〉: σ1 × . . . × σn as an abbreviation for

〈. . . 〈M1,M2〉, . . . ,Mn〉 (remembering that × associates to the left); in the special case

n = 1 we may write 〈M1〉: σ1 as an “abbreviation” for M1. The mth projection of

an n-ary product, 1 ≤ m ≤ n, may be found by applying the constant πn
m defined as

follows:
π1

1 ≡ id

πn
m+1 ≡ πn

m ◦ π1 (n ≤ m)

πm+1
m+1 ≡ π2.

Similar definitions hold for the n-ary sum, if each of the types σk is of the form τk→υ

for some fixed type υ. That is, we get the term [M1, . . . ,Mn]: τ1 + . . . + τn→υ as an

abbreviation for [. . . [M1,M2], . . . ,Mn], with the special case [M1] ≡ M1. The mth

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 45

injection ιnm into an n-ary sum is given by

ι11 ≡ id

ιnm+1 ≡ ι1 ◦ ιnm (n ≤ m)

ιm+1
m+1 ≡ ι2.

The product constructors allow us to define a pattern-matching version of λ-

abstraction. Given n variables x1, . . . , xn and n types σ1, . . . , σn, for n ≥ 0, we write

(λ〈x1: σ1, . . . , xn: σn〉.M) as an abbreviation for

(λp: σ1 × . . .× σn. {π
n
1 p/x1} . . . {π

n
np/xn}M),

where p is not free in M . We will add other kinds of patterns eventually, so let us

speak generally of binding a pattern P in M with the syntax (λP.M). Note that we

may generalize the product pattern to have an arbitrary pattern for each component,

instead of just the basic pattern x: σ.

Another useful piece of syntactic sugar is the let statement. We will write

let P = M in N for the compound term (λP. N)M , where P is a pattern as

above. In the case that M is of the form (λQ.M ′), in which case P must look like

f : σ→τ , we will also write this as let f(Q): τ = M ′ in N . As an example, the term

let car〈x: nat , y: bool〉: nat = x in . . . is an abbreviation for

let car : nat × bool→nat = (λ〈x: nat , y: bool〉. x) in . . . ,

which is itself an abbreviation for (after several substitutions)

(λcar : nat × bool→nat)(λp: nat × bool . π1p).

We may use a similar “in-line” form for the n-ary sum, namely the case statement

mentioned above in a slightly different form (which we did not want to add as a

basic piece of syntax, but which is quite useful as auxiliary syntax). Thus, the term

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 46

[(λP1. N1), . . . , (λPn. Nn)]M may be written out as

case M of ιn1P1. N1, . . . , ι
n
nPn. Nn.

As an example of the use of several of these abbreviations, we introduce the type

of booleans, defined as bool ≡ 1 + 1. There are two values of this type, namely ι13

and ι23; we will refer to them respectively as true and false. A conditional similar

to the term if B then M else N of the previous chapter is then expressible as

case B of true.M, false. N , which is certainly more readable than the “unsugared”

version, [(λx: 1.M), (λx: 1. N)]B.

We have mentioned several times the interpretation of substitution in a type ex-

pression as being the application of a functor to an object; we now describe the

effect of applying a functor to an arrow. For our purposes, it will be more useful to

apply a functor to an internal arrow, that is, a term of function type; because our

intended model is a cartesian closed category, i.e., we have extensional finite prod-

ucts and function spaces, this is entirely equivalent to defining functor application

on arbitrary terms and their typing contexts. Thus, given a functor F and a term

M : σ→τ , we will produce a term F (M):F (σ)→F (τ). In addition, after the equa-

tions are introduced in the next section, we will be able to prove that F (id) = id and

F (M ◦N) = F (M)◦F (N), completely justifying our referring to F as a functor. The

basic idea for this comes from Hagino [21, 22], although his presentation is somewhat

more difficult to read and treats only strictly positive functors. The definition of

F (M) will proceed by cases on the structure of F (t), where t is a fresh type variable:

• if F (t) = υ, where t does not occur free in υ, then F (M) = idυ;

• if F (t) = t, then F (M) = M ;

• if F (t) = G(t) +H(t), then F (M) = [ι1 ◦G(M), ι2 ◦H(M)];

• if F (t) = G(t)×H(t), then F (M) = λ〈x:G(σ), y:H(σ)〉. 〈G(M)x,H(M)y〉;

• if F (t) = G(t)→H(t), then F (M) = λf :G(σ)→H(σ). H(M) ◦ f ◦G(Mop) (see

below);

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 47

• if F (t) = µs.G(s, t), then F (M) = it
F (τ)
µs.G(s,σ)(foldµs.G(s,τ) ◦G(F (τ),M));

• if F (t) = νs.G(s, t), then F (M) = new
F (σ)
νs.G(s,τ)(G(F (σ),M) ◦ unfoldνs.G(s,σ)).

For the system as defined in this chapter, F will always be strictly positive, so the

type expression G(t) will not depend on t in the case F (t) = G(t)→H(t) above. For

purposes of the next chapter, however, we include the mechanism for dealing with

arbitrary covariant functors F . The notation Mop is meant to indicate a term of type

τ→σ, the opposite ofM : σ→τ . Since in general we have no way of forming an opposite

term, the only rules we have are that opposite is an anti-involution, i.e., the opposite

of the opposite is the original term: (Mop)op ≡M , and opposite is contravariant with

respect to composition: (M ◦N)op ≡ Nop ◦Mop (from which it is easy to prove that

also idop ≡ id). In forming the subterm G(Mop), if G is contravariant then by using

this rule we will only ever need M ; if Mop appears in the fully expanded term F (M),

then F must not have been covariant.

Note that in the definition of F (M) when F is a recursive type, we treat the body

of F as a functor G with two arguments, reflecting the fact that we are keeping track

of two free type variables — the variable t for which we are “substituting” M , and

the variable s which is bound by the recursive constructor in F . In fact, we may

treat a type expression σ with n free type variables as an n-argument functor F ;

the application F (τ1, . . . , τn) represents the simultaneous substitution of the n type

expressions for the corresponding variables, and the application to terms is defined

essentially as above. We will not go through the details of this extension here, as

they will only be used once in the sequel (in the proof that F preserves composition,

for the case when F is a recursive type).

Recall that the intended meaning of µF and νF is that they are recursive types,

that is, that µF ∼= F (µF) and νF ∼= F (νF), but so far we have only seen arrows giv-

ing one direction for each of these isomorphisms. With the aid of the equational proof

system given in the next section, we may see that an inverse to foldµF is provided by

the term it
F (µF)
µF F (foldµF):µF→F (µF). We will refer to this term as unfoldµF . Sim-

ilarly, an inverse to unfoldνF is given by the term new
F (νF)
νF F (unfoldνF):F (νF)→νF ,

which we call foldνF . With these inverse terms we may define another kind of pattern

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 48

matching — if we write (λ foldµF (x:F (µF)).M), then that will be understood as

syntactic sugar for (λy:µF. {unfoldµF y/x}M), and similarly for νF (just change the

µ’s to ν’s). Unfortunately, when we consider the reduction system which provides the

operational semantics for λµν , we will find that these inverses can not be computed

in constant time; instead, they take time proportional to the size of their argument.

The impact of this is that it would not be merely syntactic sugar to add a reduction

rule such as

(λ foldµF (x:F (µF)).M)(foldµF N) −→ {N/x}M,

since it conflates an unknown number of reduction steps into one. This is in contrast to

the other pattern matching abbreviations; for example, it makes no essential difference

in running time to use the following reduction rules for the conditional statement

introduced above:

case true of true.M, false. N −→M

case false of true.M, false. N −→ N.

One solution to this is to simply add unfoldµF and foldνF as constants, with an extra

(one step) reduction rule unfold(fold M) −→ M for each pair of constants; this will

be discussed further below.

3.2 Equational proof system for λµν

Now that we have introduced the syntax of λµν , it is time to give a formal semantics

for the language, in the form of a set of equational axioms and proof rules very similar

to those given for PCF in the previous chapter. The categorical interpretation will

continue to be our guide in describing the equations that hold between terms. Thus,

the equation Γ⊲M = N : σ will be interpreted as saying that the arrows corresponding

to the terms Γ ⊲M : σ and Γ ⊲N : σ, which both have source γ and target σ, are equal.

We start by listing the usual structural rules necessary to have an equivalence relation

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 49

that respects term formation, including adding and renaming variables:

(ref) Γ ⊲ M = M : σ

(sym)
Γ ⊲M = N : σ

Γ ⊲ N = M : σ

(trans)
Γ ⊲ M = N : σ, Γ ⊲ N = P : σ

Γ ⊲M = P : σ

(abs)
Γ, x: σ ⊲ M = N : τ

Γ ⊲ (λx: σ.M) = (λx: σ.N) : σ→τ

(app)
Γ ⊲ M = N : σ→τ, Γ ⊲ P = Q : σ

Γ ⊲ MP = NQ : τ

(add var)
Γ ⊲M = N : σ

Γ, x: τ ⊲ M = N : σ

(α) Γ ⊲ (λx: σ.M) = (λy: σ. {y/x}M) : σ→τ, if y 6∈ FV(M).

The rules (abs) and (app), often referred to as (ξ) and (µ), together with the (→β)

axiom below are sufficient to establish that = is a congruence, since we may prove

the following substitution lemma:

Lemma 3.2.1 (Substitution) If Γ, x: σ⊲M = N : τ and Γ⊲P = Q : σ are provable,

then so is Γ ⊲ {P/x}M = {Q/x}N : τ .

Proof. Using (abs) on the first equation yields Γ ⊲ (λx: σ.M) = (λx: σ.N) : σ→τ ;

by (app) we may combine this with the second equation to get Γ ⊲ (λx: σ.M)P =

(λx: σ.N)Q : τ . From (→β) we find that Γ ⊲ (λx: σ.M)P = {P/x}M : τ and

Γ ⊲ (λx: σ.N)Q = {Q/x}N : τ , hence an application of (sym) and two instances of

(trans) establish that Γ⊲{P/x}M = {Q/x}N : τ . (We will not ordinarily go through

proofs in such detail; the purpose here was to demonstrate that the rules are sufficient

to carry out complete proofs if desired.)

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 50

The rest of the axioms and inference rules come in two forms; in terms of the cat-

egorical interpretations of the type constructors, the (β) axioms state that the arrows

provided for the type make a particular diagram commute, while the (η) axioms and

rules establish that those arrows do so uniquely. For example, the categorical defini-

tion of the sum states that for any two objects X and Y there is an object X + Y ,

injection arrows ι1:X→X + Y and ι2:Y→X + Y , and a sum arrow [f, g]:X + Y→Z

for every pair of arrows f :X→Z and g:Y→Z. The (β) axioms will assert that these

arrows make the following diagram commute:

Z

f
@

@
@

@@R

X X + Y-ι1 Y�ι2

?

[f, g] g
�

�
�

��	
,

while the (η) axiom says that [f, g] is the unique arrow with this property. Thus, we

have the following axioms for +:

(+β1) Γ ⊲ [M,N] ◦ ι1 = M : σ→υ

(+β2) Γ ⊲ [M,N] ◦ ι2 = N : τ→υ

(+η) Γ ⊲ [M ◦ ι1,M ◦ ι2] = M : σ + τ→υ.

Since 0 is a nullary sum, we only have an (η) rule, which says that 2
υ is the unique

arrow from 0 to υ:

(0η) Γ ⊲2
υ = M : 0→υ.

Similarly, the (β) axioms for × assert the commutativity of

X X × Y�
π1

Y-
π2

W

f
�

�
�

��	 ?

〈f, g〉 g
@

@
@

@@R
,

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 51

and the (η) axiom says that 〈f, g〉 is unique; the (η) axiom for 1 says that 3 is the

unique term of type 1:

(×β1) Γ ⊲ π1〈M,N〉 = M : σ

(×β2) Γ ⊲ π2〈M,N〉 = N : τ

(×η) Γ ⊲ 〈π1M,π2M〉 = M : σ × τ

(1η) Γ ⊲3 = M : 1.

The situation for → is somewhat more complex, since the appropriate diagram

results not simply from a limit or colimit, but instead from the adjunction between

−× Y and Y→−; nevertheless, it is a standard result that the commutativity of

X × Y (Y→Z)× Y-curry(f)× id

Z

f

@
@

@
@

@@R

apply

�
�

�
�

��	

is expressed by

(→β) Γ ⊲ (λx: σ.M)N = {N/x}M : τ,

while the uniqueness of curry(f) is given by

(→η) Γ ⊲ (λx: σ.Mx) = M : σ→τ, for x 6∈ FV(M).

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 52

Recall that we have already described the commutative diagrams corresponding

to the inductive and projective types. For µF , the commutativity of

µF X-
hf

F (µF) F (X)-F (hf)

?

ϕ

?

f

is given by

(µβ) Γ ⊲ (it τ
µF M) ◦ foldµF = M ◦ F (it τ

µF M) : F (µF)→τ,

while the uniqueness of hf is established by

(µη)
Γ ⊲ N ◦ foldµF = M ◦ F (N) : F (µF)→τ

Γ ⊲ N = it τ
µF M : µF→τ.

Dually, the diagram

F (Y) F (νF)-
F (kg)

Y νF-kg

?

g

?

ψ

for the projective type νF leads to

(νβ) Γ ⊲ unfoldνF ◦(new τ
νF M) = F (new τ

νF M) ◦M : τ→F (νF)

and

(νη)
Γ ⊲ unfoldνF ◦N = F (N) ◦M : τ→F (νF)

Γ ⊲ N = new τ
νF M : τ→νF.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 53

As promised in the previous section, we may now prove some lemmas about the

behavior of our abbreviated terms.

Lemma 3.2.2 Composition is associative, and id is an identity, i.e., M ◦ (N ◦P) =

(M ◦N) ◦ P and M ◦ id = id ◦M = M .

Proof. Expanding M ◦ (N ◦ P) yields (assuming P has type σ→τ)

(λx: σ.M((λy: σ.N(Py))x)),

which by (→β) is equal to (λx: σ.M(N(Px))); this is also equal to

(λx: σ. (λy: τ.M(Ny))(Px)),

which is the expanded form of (M ◦ N) ◦ P . As for the identity, both of the terms

M ◦ id and id ◦M are equal by (→β) to (λx: σ.Mx); using (→η), this is equal to M ,

since in the definition of ◦ we required that x be a new variable.

Lemma 3.2.3 Application of a “functor” F to a term preserves composition and

identities, i.e., F (M ◦N) = F (M) ◦ F (N) and F (id) = id (thus justifying use of the

term functor for substitution in a type).

Proof. By induction on the structure of F ; we will only show a few of the more

interesting cases. For the induction to go through, we actually need to prove more —

namely, that this result can be extended to functors with more than one argument,

e.g., G(M ◦N,P ◦Q) = G(M,P)◦G(N,Q); this extension is quite easy and giving the

full details would not add enough to the presentation to be worth the extra notation.

We assume that Γ ⊲M : τ→υ and Γ ⊲ N : σ→τ are well-formed for some Γ.

• if F (t) = G(t) +H(t), then

F (M) ◦ F (N) = [F (M) ◦ F (N) ◦ ι1, F (M) ◦ F (N) ◦ ι2]

= [F (M) ◦ ι1 ◦G(N), F (M) ◦ ι2 ◦H(N)]

= [ι1 ◦G(M) ◦G(N), ι2 ◦H(M) ◦H(N)]

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 54

= [ι1 ◦G(M ◦N), ι2 ◦H(M ◦N)]

= F (M ◦N);

also, F (idσ) = [ι1, ι2] = idF (σ).

• if F (t) = G(t)→H(t), then

F (M ◦N) = λf :F (σ). H(M ◦N) ◦ f ◦G((M ◦N)op)

= λf :F (σ). H(M) ◦H(N) ◦ f ◦G(Nop) ◦G(Mop)

= λf :F (σ). H(M) ◦ (F (N)f) ◦G(Mop)

= λf :F (σ). F (M)(F (N)f)

= F (M) ◦ F (N);

for the identity, we have

F (idσ) = λf :F (σ). H(idσ) ◦ f ◦G((idσ)op)

= λf :F (σ). idH(σ) ◦f ◦ idG(σ)

= idF (σ) .

• if F (t) = µs.G(s, t), then

F (M) ◦ F (N) ◦ foldF (σ)

= F (M) ◦ foldF (τ) ◦G(F (τ), N) ◦G(F (N), σ)

= foldF (υ) ◦G(F (υ),M) ◦G(F (M), τ) ◦G(F (τ), N) ◦G(F (N), σ)

= foldF (υ) ◦G(F (υ),M) ◦G(F (υ), N) ◦G(F (M), σ) ◦G(F (N), σ)

= foldF (υ) ◦G(F (υ),M ◦N) ◦G(F (M) ◦ F (N), σ),

where the interchange G(F (M), τ) ◦ G(F (τ), N) = G(F (υ), N) ◦ G(F (M), σ)

in the middle is possible because both sides are equal to G(F (M), N), noticing

that, e.g., G(F (M), τ) = G(F (M), idF (τ)) and using the multiple argument

form of the induction hypothesis. From the above we may then use (µη) to

deduce that F (M) ◦ F (N) = it
F (υ)
F (σ)(foldF (υ) ◦G(F (υ),M ◦ N)) = F (M ◦ N).

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 55

For the identity, we must show that F (idσ) = it
F (σ)
F (σ) foldF (σ) is the identity;

but idF (σ) ◦ foldF (σ) = foldF (σ) ◦G(idF (σ), σ) by the induction hypothesis, so

idF (σ) = it
F (σ)
F (σ) foldF (σ) by (µη).

We may now use this lemma about functors to prove that the defined terms for

unfoldµF and foldνF are really inverses.

Lemma 3.2.4 The term unfoldµF ≡ it
F (µF)
µF F (foldµF) is an inverse for foldµF , i.e.,

foldµF ◦ unfoldµF = idµF and unfoldµF ◦ foldµF = idF (µF). Similarly, foldνF ≡

new
F (νF)
νF F (unfoldνF) is an inverse for unfoldνF .

Proof. For variety, we will show the proof for the projective type νF ; the inductive

case is quite similar. First, note that unfoldνF ◦ foldνF = F (foldνF) ◦ F (unfoldνF) =

F (foldνF ◦ unfoldνF) by (νβ) and the previous lemma; thus we only need to show

the direction foldνF ◦ unfoldνF = idνF . From what we have just shown, we know

that unfoldνF ◦ foldνF ◦ unfoldνF = F (foldνF ◦ unfoldνF) ◦ unfoldνF , hence the (νη)

rule allows us to derive foldνF ◦ unfoldνF = newνF
νF unfoldνF . This last term is the

identity, by using (νη) on the equation unfoldνF ◦ id
νF = F (idνF) ◦ unfoldνF , so we

are done.

3.3 The reduction system λµνr

In this section we present an operational semantics for λµν , in the form of a set of

reduction rules similar to those given for PCF in the previous chapter. We will show

that this system is confluent and strongly normalizing, hence it will be meaningful to

speak of the (unique) result of evaluating a term by reducing it to normal form. We

then study the set of definable functions and find that this set of functions properly

includes those that may be proven total in Peano arithmetic, hence we have a system

which is more expressive than Gödel’s System T of primitive recursive functionals.

The reduction rules we will take for λµν
r are essentially the (β) axioms of the

previous section, oriented in the direction of “computation.” Since we do not include

any (η) rules, the form of some of the axioms will be changed to better match our

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 56

notion of normal form — instead of dealing with functional terms and composition,

we will apply such terms to dummy arguments to get rid of the ◦’s. Here are the

reduction rules:

(+β1)r [M,N](ι1P) −→ MP

(+β2)r [M,N](ι2P) −→ NP

(×β1)r π1〈M,N〉 −→ M

(×β2)r π2〈M,N〉 −→ N

(→β)r (λx: σ.M)N −→ {N/x}M

(µβ)r it τ
µF M(foldµF P) −→ M(F (it τ

µF M)P)

(νβ)r unfoldνF (new τ
νF MP) −→ F (newτ

νF M)(MP).

As usual, we write M −→ N if there is some subterm P of M (i.e., M ≡ C[P] for some

context C[]) and substitution θ such that P ≡ θL and N ≡ C[θR], where L −→ R is

one of the above rules. The subterm P in M which is replaced is the redex , the term

θR which replaces it is the contractum, and the result N is the reduct . A term which

contains no redexes is a normal form. We write −→→ for the reflexive transitive closure

of −→; if we only want the transitive closure, which means that we must perform at

least one reduction step, then we write −→+. Note that, in this section, we will use ≡

to mean α-equivalent, rather than strictly identical — two different reductions from a

given term may result in different names for “corresponding” bound variables, so for

confluence we need to be able to rename them; however, using (α) as a reduction rule

is a bad idea, since it would need special handling to preserve strong normalization

(it does not have the same intuitive feeling of “performing a computation step” as

the (β) rules, either).

We have left off the types and typing contexts in defining reduction, but it is an

easy lemma to prove that reduction preserves type:

Lemma 3.3.1 (Subject Reduction) If Γ ⊲ M : σ is well-formed and M −→→ N ,

then Γ ⊲ N : σ is also well-formed.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 57

The first important theorems of this section are that λµν
r is confluent and strongly

normalizing. As a result, we will be able to speak of the unique normal form λµν
r (M)

of an arbitrary term M , independent of any specific reduction strategy — one strategy

may be more efficient than another at finding the normal form of a given term, but

every reduction path will eventually terminate with the same result. We will prove

strong normalization first, as this result is used in the proof of confluence.

Theorem 3.3.2 (Strong Normalization) There is no infinite sequence of reduc-

tions M1 −→M2 −→M3 −→ · · ·.

Proof. In section 3.5 we give a translation of λµν into Girard’s System F, with the

property that if M −→ N in λµν
r then M −→+ N in F; since F is strongly normalizing

[17], this proves that λµν
r is also, since otherwise we would be able to construct the

infinite reduction sequence M1 −→+ M2 −→+ M3 −→+ · · · in F.

Theorem 3.3.3 (Confluence) If M −→→ N and M −→→ P , then there is a term

Q such that N −→→ Q and P −→→ Q.

Proof. We only need to show that λµν
r is weakly confluent, i.e., if M −→ N and

M −→ P then N and P have a common reduct, since by the previous theorem λµν
r

is strongly normalizing — using Newman’s theorem [39] we may conclude that it is

confluent. It is easy to see that it is weakly confluent, since there are no critical pairs,

hence we are done.

To continue the comparison of λµν
r with PCF, we need to establish which types

are observable. The criterion we use for whether a type is observable is if provable

equality of closed terms of that type may be decided by reducing the terms to normal

form and checking for syntactic identity. We restrict ourselves to closed terms because

free variables can block the application of reduction rules — for example, the equation

x: σ × τ ⊲ 〈π1x, π2x〉 = x : σ × τ is true, but the two sides are distinct normal forms.

If σ and τ are observable types, then we will see below that any closed term which

could be substituted for x will be reducible to a pair 〈N1, N2〉 of normal forms, whence

the left-hand side will reduce by two additional (×β) steps to a term identical to the

right-hand side; however, substituting every possible closed term for x and reducing

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 58

is not a very effective way to try to observe equality.2 Functional types will not be

observable, since a λ-abstraction introduces a variable which may cause the above

problems in the body of the abstraction. Therefore, let us consider the possible

normal forms which do not contain any free variables or λ-abstractions. In addition,

although we have other ways than λ-abstraction to create terms of functional type,

we will not want to try to observe a normal form containing such a subterm unless

it is at the head of an application, thus guaranteeing that the term is not equal to

another normal form with a λ-abstraction in that position.

Lemma 3.3.4 The closed normal forms that do not contain any subterms of function

type except at the head of an application are those well-formed terms that may be

generated by the following grammar:

R ::= 3 | ι1R | ι2R | 〈R,R
′〉 | foldµF R;

we refer to these terms as results.

Proof. We could not have a result of the form π1R, for example, because for it

to be a normal form we would need R to be a result of product type which is not

a pair. Similarly, we could not have a result of the form π2R, itµF RR
′, unfoldνF R,

or [R,R′]R′′. The only other way to get a result of type σ that is not of the form

above is by 2
σR, where R has type 0. There are no closed terms of type 0, so this is

impossible. Finally, note that there are no closed normal forms of type νF without

functional subterms, since normal forms of that type would have to be of the form

newνF RR
′, where R has a functional type.

Therefore, the observable types are 1, σ + τ , σ × τ , and µF , where σ and τ are

observable and F (υ) is observable whenever υ is. The definition of a result as a

closed normal form of observable type then matches the characterization given above.

Some examples of observable types are:

• bool ≡ 1 + 1, the type of booleans introduced above; the results are true ≡ ι13

and false ≡ ι23.

2And not necessarily even valid — this is the (ω) rule, which Plotkin [41] showed is not always
sufficient for extensionality.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 59

• nat ≡ µt. 1 + t, the set of natural numbers; results of this type take the form

zero ≡ fold(ι13) or succ(n) ≡ fold(ι2n), where n is another such result.

• bool × nat , pairs 〈b, n〉 of booleans and naturals.

• natlist ≡ µt. 1+nat × t, the type of lists of natural numbers; the results of this

type are of the form nil ≡ fold(ι13) and cons(n, ℓ) ≡ fold(ι2〈n, ℓ〉).

Thus we regain many of the observable types of PCF as a consequence of our more

general definition.

We may now state the final theorem of this section, which asserts that λµν
r is

adequate for the computation of results of programs. This is analogous to the result

property for PCF, although the method of proof will be somewhat different. Because

of the form of the (η) rules for inductive and projective types, we do not have a

reasonable definition for either η-reduction or η-expansion. For example, not only

would use of the rule M −→ itτ
µF N be conditional on having proven the equation

M ◦ foldµF = N ◦ F (M), but it also introduces the term N in the contractum which

does not occur in the redex — since N could contain free variables not present in M ,

we would need to reintroduce typing contexts to insure subject reduction. The same

observation holds for the opposite direction, it τ
µF N −→M ; therefore, we will not be

able to proceed through the intermediate step of an η-postponement lemma.

Theorem 3.3.5 If ∅ ⊲ P = R : σ is provable for R a result, then P −→→ R in λµν
r .

Proof. It is sufficient to show that if ∅ ⊲ P
η
=1 Q: σ is provable, and Q −→→ R for

R a result, then P −→→ R, where
η
=1 means that exactly one (η) rule is used (along

with whatever structural rules are needed). The theorem then follows by the normal

form property of −→→ and induction on the number of (η) rules.

The problem then is to construct a reduction sequence P −→→ R from the given

sequence Q −→→ R. If the (η) rule is (+η), (×η), or (→η), then this chiefly consists of

mimicking the reduction fromQ on P , either adding or deleting steps corresponding to

the destruction of an (η) redex by a (β) reduction. One difficulty arises in these cases

from the non-linearity of (+η) and (×η) — if Q contains the subterm [M ◦ ι1,M ◦ ι2]

where P only has M , for example, then we must choose to follow the reduction on

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 60

only the first, say, of the two components of the choice in reducing P ; since R is a

result and reduction is confluent, we may make this choice arbitrarily.

We are thus left with the case of the (η) step for one of the recursive types.

We will consider (µη) — the situation for (νη) is entirely similar. If P contains a

subterm M and Q contains it τ
µF N in the same position, then in constructing the

reduction from P we will need to use the hypothesis from the (η) rule, i.e., M ◦

foldµF = N ◦ F (M). Now, for every (µβ) step in the original reduction of the form

it τ
µF N

′(foldµF K) −→ N ′(F (it τ
µF N

′)K), we must replace it with the equational step

M ′(foldµF K) = N ′(F (M ′)K), where M ′ and N ′ are corresponding residuals of M

and N . We must then go back and apply the current theorem to convert this new

equational proof of P = R into a reduction P −→→ R; we avoid circularity by noting

that the height of the new proof tree for P = R is shorter than before, measured

in the number of nested applications of the (µη) and (νη) rules. In the situation

where P contains it τ
µF N and Q contains M we go through the same process, with

the additional requirement that the reduction from Q must be rearranged so that if

M is a λ-abstraction it will only be β-reduced when applied to arguments of the form

foldµF K.

Corollary 3.3.6 If ∅ ⊲ P = Q : σ is provable at observable type σ, then λµν
r (P) ≡

λµν
r (Q).

Proof. Trivial, since reduction is confluent and strongly normalizing.

If we define observational congruence again as Γ⊲M ≃ N : σ if λµν
r (P[M]) ≡ λµν

r (P[N])

for every well-formed program context P[], then we find that the full equational proof

system, including the extensional rules, is sound for reasoning about programs:

Corollary 3.3.7 The equational proof system for λµν is sound for ≃.

Proof. Follows directly from the previous corollary.

Therefore, we conclude that λµν
r provides a suitable operational semantics for the

language λµν .

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 61

3.4 Comparison with System T

The question naturally arises of what functions are expressible in λµν . We speak here

of functions on the natural numbers, as given by the (observable) type nat described

in the previous section. Since λµν
r is strongly normalizing, all the functions must be

total. We can enumerate the terms of λµν , therefore we must not be able to represent

all of the total functions (since that set is not recursively enumerable). In this section

we will see that all of the functions that are provably total in Peano arithmetic are

definable, as well as some that are not. In the next section we show that λµν
r is

strongly normalizing by simulating it in System F; since the functions expressible in

F are exactly those which are provably total in second-order arithmetic, we thus have

a range in which the answer must fall:

Theorem 3.4.1 The class of functions definable in λµν properly includes those which

are provably total in Peano arithmetic, and is included in the class of functions prov-

ably total in second-order arithmetic.

To prove the first part of this theorem, we will compare λµν to Gödel’s System T of

primitive recursive functionals of finite type ([18]; see also [17], for example). It is

well-known that the natural number functions representable in T are precisely the

partial recursive functions that are provably total in Peano arithmetic. Therefore, we

start by showing that all those functions are also representable in λµν .

System T consists of the simply-typed lambda calculus λ→ plus the following

constant terms and equations:

0: nat

succ: nat→nat

Rτ : τ→(τ→nat→τ)→nat→τ

Rτ MN0 = M

Rτ MN(succ P) = N(Rτ MNP)P.

Here the type identifier nat is a new type constant, whose interpretation is the set

of natural numbers; the terms 0 and succ represent the natural number zero and the

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 62

successor function. The term R gives a recursor ; it is a generalization of definition

by primitive recursion — if a function f : nat→nat→nat is defined using primitive

recursion as
f(x̄)(0) = g(x̄)

f(x̄)(succ n) = h(x̄)(f(x̄)(n))(n),

where g: nat→nat and h: nat→nat→nat→nat are given, then it may be written using

R as (λx̄: σ̄. Rnat(gx̄)(hx̄)). The type τ in Rτ may be any type, not just nat , hence

we are able to define primitive recursive functionals . The well-known non-primitive

recursive function, Ackermann’s function3, specified by

Ack(0)(y) = succ y

Ack(succ x)(0) = Ack(x)(1)

Ack(succ x)(succ y) = Ack(x)(Ack(succ x)(y)),

is easily defined with R as

Rnat→nat(succ)(λf : nat→nat . λx: nat . Rnat(f1)(λz: nat . λy: nat. fz)).

The variable f in the second argument is bound to the curried function Ack(x) for

the appropriate current value of x each time the outer recursion is unfolded; this is

not possible in the ordinary scheme of primitive recursive function definition.

We have already seen how to define a type nat with constants 0 and succ in λµν ;

thus we only need to define a recursor Rτ and show that it satisfies the above equa-

tions. The syntax of λµν only gives us an iterator , i.e., a term Zτ : τ→(τ→τ)→nat→τ

satisfying

Zτ MN 0 = M

Zτ MN(succ P) = N(Zτ MNP).

Here we use the compound Zτ MN as an abbreviation for the term it τ
nat [λ3.M,N].

Note that the argument P is not available to the function N in the recursive step,

unlike the case for the recursor. The second argument to N is not used very often;

3Actually due to Péter; Ackermann’s original function was somewhat different; see [47] for
example.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 63

for example, we may write the Ackermann function using Z as

Znat→nat(succ)(λf : nat→nat . Znat(f1)f).

One significant function which does use the second argument is predecessor: pred =

Rnat 0(λx: nat . λy: nat. y).

In a language with products, a standard way to imitate a recursor with an iterator

is to have the iterative call return both the current result and the corresponding value

of the unavailable second argument. That is,

Zτ×nat M ′N ′0 = 〈M, 0〉

Zτ×nat M ′N ′(succ P) = (let 〈x: τ, p: nat〉 = (Zτ×nat M ′N ′P) in 〈Nxp, succ p〉),

where we must take M ′ ≡ 〈M, 0〉 and N ′ ≡ (λ〈x: τ, p: nat〉. 〈Nxp, succ p〉). Thus the

recursor-defined function Rτ MN is also given by π1 ◦ (Zτ×nat M ′N ′).

Using this replacement for the recursor has an embarrassing property when applied

to the definition of the predecessor — the equation pred(succ P) = P only holds if

P is equal to a numeral succn 0. Even worse, in terms of the reduction system, pred

must first evaluate its argument to normal form (which is wasteful if, for example,

we are only going to test whether the predecessor is zero), and then, to compute

pred(succn+1 0), it will apply the successor function to zero n times to reconstruct

succn 0, instead of just peeling off the outermost succ. Thus predecessor has been

turned from a constant time lazy operation into a linear time strict operation.4

Our solution to this problem was hinted at earlier — we introduce the constant

unfoldµF :µF→F (µF), and add the axioms

(µβ ′) Γ ⊲ unfoldµF ◦ foldµF = idF (µF) : F (µF)→F (µF)

4The lazy versus strict distinction will be important in the next chapter, where we allow non-
termination.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 64

and

(µη′) Γ ⊲ foldµF ◦ unfoldµF = idµF : µF→µF.

Using the (µη) rule, we proved in lemma 3.2.4 that this new constant is equal to the

term it
F (µF)
µF F (foldµF), which we have also been calling unfoldµF . To λµν

r we add the

corresponding β-reduction

(µβ ′)r unfoldµF (foldµF P) −→ P ;

it is not difficult to prove that all the theorems of the previous section continue to

hold for this expanded system. Of course, because these new constants are definable

in the unexpanded language, we are not changing the set of definable functions, only

the set of expressible algorithms.

Dually, we also add a constant foldνF :F (νF)→νF and rules

(νβ ′) Γ ⊲ unfoldνF ◦ foldνF = idF (νF) : F (νF)→F (νF)

(νη′) Γ ⊲ foldνF ◦ unfoldνF = idνF : νF→νF

(νβ ′)r unfoldνF (foldνF P) −→ P ;

this avoids a similar problem for projective types.

For example, let us define a type bstr ≡ νt. bool × t of boolean streams, with de-

structors head ≡ π1◦unfold bstr : bstr→bool and tail ≡ π2◦unfold bstr : bstr→bstr , as well

as a constructor all ≡ new bool
bstr dup: bool→bstr which creates a constant stream, where

dup ≡ (λb: bool . 〈b, b〉): bool→bool × bool . Then we find that head(all false) −→→ false

and tail(all false) −→→ all false, as expected. If we want to define a construc-

tor to cons a boolean onto the head of a stream, then one way is to use cons ≡

new bool×bstr
bstr (id bool × unfold bstr): bool × bstr→bstr . Unfortunately, this introduces an

unnecessary unfolding when evaluating tail(cons〈true, all false〉), for example; the

normal form of this term is cons〈false, all false〉 instead of simply all false. This is

not entirely unexpected, since bstr is not an observable type, hence there may be

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 65

many distinct normal forms for a given stream. What is worse is that this extra un-

folding will propagate through an entire sequence of cons ’s, i.e., to compute the tail of

a stream b1 : : b2 : : . . . : : bn : : s, where we write b : : s as shorthand for cons〈b, s〉, the

reduction will pick off b1 through bn, unfold s once, and then cons b2 through bn back

onto the head! The solution is to use the constant fold bstr : bool×bstr→bstr instead of

cons ; the extra unfolding is avoided, and the tail can be computed in constant time.

With unfoldµF we may make an ad hoc definition of predecessor simply as pred =

[λ3. 0, id]◦unfoldnat . A more interesting discovery is that we may use this predecessor

function to define a recursor Rit with the same reduction behavior as R. The idea is

to use the iterator to create a function that passes the needed second argument down

from the outside, rather than creating it up from the inside. Here is the term that

defines Rτ
it MN :

(λn: nat . Znat→τ (λx: nat .M)(λf : nat→τ. λm: nat. N(f(pred m))(pred m))nn).

Theorem 3.4.2 A function defined with the recursor Rit will have the same running

time in λµν
r +(µβ ′)r (within a constant factor) as the equivalent function defined with

R will have in T.

Proof. All we need to show is that the two reduction rules for R in T can be

performed in constant time in λµν
r + (µβ ′)r. We omit a number of steps showing

the details of reducing Z and pred ; it is easy to verify that the total number of

steps remains independent of the size of the input. Also, we abbreviate the term

Znat→τ (λx: nat .M)(λf : nat→τ. λm: nat . N(f(pred m))(pred m)) as Qτ
M,N .

Rτ
it MN 0 −→ Qτ

M,N 0 0

−→→ (λx: nat .M) 0

−→ M

Rτ
it MN(succ P) −→ Qτ

M,N(succ P)(succ P)

−→→ (λf : nat→τ. λm: nat . N(f(pred m))(pred m))(Qτ
M,N P)

(succ P)

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 66

−→ (λm: nat . N(Qτ
M,N P (pred m))(pred m))(succ P)

−→ N(Qτ
M,N P (pred(succ P)))(pred(succ P))

−→→ N(Qτ
M,N PP)P.

This last term is one (→β) step from N(Rτ
it MNP)P , which corresponds to the term

we would get after one reduction step from Rτ MN(succ P) in T.

We have already mentioned the relation between System T and the functions that

are provably total in Peano arithmetic. Another characterization of the functions

expressible in T is that they are the functions definable by transfinite recursion up

to some ordinal α < ǫ0, where ǫ0 is the least ordinal ǫ such that ǫ = ωǫ (see [30]

or [48]; a good text covering this subject is [47]). We will show that λµν is more

expressive than T, thus completing the proof of Theorem 3.4.1, by constructing the

Hardy function Hǫ0, which requires recursion up to ǫ0 itself [8]. The method we use

to represent ordinal numbers and construct the hierarchy of Hardy functions is based

on an example given by Coquand and Paulin [11].

To define Hα for α ≤ ǫ0 we will need to choose a fundamental sequence for each

limit ordinal ≤ ǫ0; that is, for each limit ordinal λ we need an increasing, natural

number indexed sequence 〈λ[0], λ[1], . . .〉 of ordinals less than λ whose limit is λ. A

convenient choice makes use of the Cantor normal form, which writes each ordinal

α < ǫ0 uniquely as ωα1 + · · · + ωαk + m, for some natural numbers k and m and

ordinals (themselves in normal form) 0 < αk ≤ . . . ≤ α1 < α. If α is a limit ordinal,

then we take the ordinal ωα1 + · · · + ωαk [n] as the nth element of the fundamental

sequence for α, where ωβ+1[n] = ωβ · n and ωλ[n] = ωλ[n] for λ a limit. We extend

this definition to ǫ0 by taking ǫ0[0] = 1 and ǫ0[n+1] = ωǫ0[n]. Now we may define the

functions Hα as follows:

H0(n) = n

Hα+1(n) = Hα(n+ 1)

Hλ(n) = Hλn.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 67

The type of notations for countable ordinals may be specified as the inductive

type ord ≡ µt. 1 + t+ (nat→t); the constructors are thus

ordzero ≡ foldord ◦ι
3
1: 1→ord

ordsucc ≡ foldord ◦ι
3
2: ord→ord

lim ≡ foldord ◦ι
3
3: (nat→ord)→ord .

The interpretation of lim is that it creates an ordinal given a function which specifies

the fundamental sequence for the ordinal; for example, we may define ω ≡ lim inord ,

where inord ≡ itord
nat [ordzero, ordsucc] is the natural injection from nat to ord , since

〈0, 1, 2, . . .〉 is the fundamental sequence for ω. Addition, multiplication, and expo-

nentiation of ordinals may be defined as follows:

ordplus ≡ (λα: ord . itord
ord [(λ3. α), ordsucc, lim])

ordtimes ≡ (λα: ord . itord
ord [ordzero, (λβ: ord . ordplus βα), lim])

ordexp ≡ (λα: ord . itord
ord [ordone, (λβ: ord . ordtimes βα), lim]),

where ordone ≡ ordsucc ◦ ordzero. A function that creates an exponential stack of

n ω’s when applied to a natural number n is omegaexp ≡ itord
nat [ordone, ordexp ω]; we

may thus define a notation for ǫ0 by stating ǫ0 ≡ lim omegaexp.

The following term represents the Hardy function H : ord→nat→nat in λµν :

itnat→nat
ord [(λ3. idnat), (λf : nat→nat . f ◦ succ), (λg: nat→nat→nat . λn: nat . gnn)].

We will demonstrate the use of these definitions by evaluating Hǫ0(0):

Hǫ0 0 ≡ H(lim omegaexp) 0

−→→ (H ◦ omegaexp) 0 0

−→→ H(ordone3) 0

≡ H(ordsucc(ordzero3)) 0

−→→ ((H(ordzero3)) ◦ succ) 0

−→→ (idnat ◦ succ) 0

−→→ succ 0.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 68

Being able to constructHǫ0 is sufficient for showing that λµν can express more than

the primitive recursive functionals of T, but there is no reason to stop at ǫ0. Indeed,

since we may define the Veblen hierarchy of functions ϕα: ord→ord for all α: ord ,

we have a system of notation for all the ordinals less than Γ0, the first “strongly

critical” ordinal (see [15] for a very readable discussion of the significance of Γ0). The

particular Veblen hierarchy to which we refer is that starting from ϕ0(β) = ωβ; then

the function ϕα for α > 0 enumerates the common fixed points of all the functions

ϕγ for γ < α. For example, ϕ1 enumerates the fixed points of ϕ0 = λβ. ωβ; these are

known as the epsilon numbers, and indeed the first fixed point ϕ1(0) is the ordinal

ǫ0 discussed above. We will not give the term which computes ϕ here, but a detailed

description of how to define it in terms of fundamental sequences is given in [10].

The ordinal Γ0 is still not the largest ordinal we can express in λµν . As Miller

shows in [34], we may extend the definition of ϕα to uncountable ordinals α that

satisfy certain conditions. For example, ϕΩ is the function which enumerates the

strongly critical ordinals (so ϕΩ(0) = Γ0), where Ω is the least uncountable ordinal.

We can express Ω, and many other uncountable ordinals, in λµν by introducing the

type ord1 ≡ µt. 1 + t+ (nat→t) + (ord→t). As for ord , the first three components of

the body of the recursive type represent zero, successor ordinals, and (nat-indexed)

limit ordinals. But ord1 also has a fourth component which allows ord -indexed limits.

If we define lim1
1 ≡ foldord1

◦ι44: (ord→ord1)→ord1, and make the obvious definition

for inord1: ord→ord1, then we may set Ω ≡ lim1
1 inord1. We may then define the

usual arithmetic operations on ord1, allowing the construction of such ordinals as Ω2,

ΩΩ, and even ǫΩ+1 = ΩΩ···

, with which we may go back and construct the countable

(but very large) ordinal ϕǫΩ+1+1(0), known as “Howard’s ordinal.”5

We may make one more step in the production of ever-larger ordinals. By gener-

alizing the construction of the types ord and ord1, we may construct the class ordn of

abstract tree ordinals (see [56]), all of which will have cardinality ℵn, by the inductive

type µt. 1 + t + (nat→t) + (ord→t) + (ord 1→t) + · · · + (ordn−1→t). Elements of

this type may be defined as limits of order type up to Ωn, the nth regular ordinal

5No relation.

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 69

beyond Ω0 ≡ ω. Further discussion of these ordinals is far beyond the scope of this

dissertation; for more details see for example [34, 56].

3.5 Comparison with System F

In this section we will give a translation of λµν into Girard’s System F that will allow

us to prove the strong normalization of λµν
r from that of F. The essential part of this

translation is the well-known representation of finite sums and products and initial

and terminal fixed points in F (see for example [17] or [24]), although the details

of the translation for inductive and projective types are original. We have already

noted that the functions expressible in F are precisely those that are provably total

in second order arithmetic, so the fact that all the functions computable by λµν
r are

also computable in F gives us an upper limit on the expressibility of λµν . We suspect

that the inclusion is proper, although we do not know an example of a function

computable in F and not in λµν
r . Interestingly, there are algorithms computable in

λµν
r + (µβ ′)r which are not computable in F — the simplest example is the constant

time predecessor mentioned in the previous section. This is a symptom of a more

general lack in System F, namely, that types such as products, sums, and least fixed

points are not extensional; as a result, many desirable equations between terms are

not provable.

System F, which was discovered independently by Girard [16] and Reynolds [46],

extends the simply typed lambda calculus λ→ with type variables and the polymorphic

type ∀t. σ. Formally, we add the following term formation rules:

(∀ Intro)
Γ ⊲ M : σ

Γ ⊲ (Λt.M): ∀t. σ
for t not free in Γ

(∀ Elim)
Γ ⊲ M : ∀t. σ

Γ ⊲ Mτ : {τ/t}σ.

The metavariables σ and τ now refer to arbitrary type expressions formed with →

and ∀; that is, they may contain free type variables. The type abstraction operator

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 70

Λ binds type variables in its body in the same manner as λ binds regular variables,

thus we need equational rules for Λ analogous to those for λ:

(∀ abs)
Γ ⊲M = N : σ

Γ ⊲ (Λt.M) = (Λt. N) : ∀t. σ

(∀ app)
Γ ⊲ M = N : ∀t. σ

Γ ⊲ Mτ = Nτ : {τ/t}σ

(∀α) Γ ⊲ (Λt.M) = (Λs. {s/t}M) : ∀t. σ, if s not free in M

(∀β) Γ ⊲ (Λt.M)τ = {τ/t}M : {τ/t}σ

(∀η) Γ ⊲ (Λt.Mt) = M : ∀t. σ, for t not free in M.

As usual, the reduction relation obtained by directing the (→β) and (∀β) axioms

from left to right will be denoted −→; if a term M reduces to another term N in one

or more steps, then we write M −→+ N .

We will now start to give a translation from λµν into F, such that if Γ ⊲ M : σ is

a well-formed term in λµν , then Γ ⊲ M : σ is a well-formed term of F. Type and term

variables will stay the same under translation, as will lambda abstraction and appli-

cation. The translation of the binary sum type σ + τ will be ∀t. (σ→t)→(τ→t)→t,

where t is not free in σ or τ ; the empty type 0 is represented by ∀t. t. Dually, the

binary product σ × τ translates to ∀t. (σ→τ→t)→t, while the singleton type 1 be-

comes ∀t. t→t. The translation of terms for these types is given in Table 3.1, where

of course it is understood that all of the variables introduced on the right hand side

are new.

Before we give the translation for the inductive and projective types, we will need

a few abbreviations. It will be convenient to continue our practice of treating a type

expression σ as a functor with respect to substitution for a type variable t, thus we

will write F (τ) to mean {τ/t}σ; it is an easy exercise to show that F (τ) ≡ F (τ).

Similarly, if M is a term of type τ→υ, then we write F (M) for the term F (M) of

type F (τ)→F (υ). The “functor” F will no longer preserve composition or identities,

since most types under the translation into F are no longer extensional (see below),

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 71

M : σ M : σ

x: σ x: σ

(λx: σ.M): σ→τ (λx: σ.M): σ→τ

MN : τ M N : τ

ι1: σ→σ + τ (λx: σ.Λt. λf : σ→t. λg: τ→t. fx): σ→σ + τ

ι2: τ→σ + τ (λx: τ .Λt. λf : σ→t. λg: τ→t. gx): τ→σ + τ

[M,N]: σ + τ→υ (λx: σ + τ . xυM N): σ + τ→υ

2
υ: 0→υ (λx: 0. xυ): 0→υ

π1: σ × τ→σ (λx: σ × τ . xσ(λy: σ. λz: τ . y)): σ × τ→σ

π2: σ × τ→τ (λx: σ × τ . xτ(λy: σ. λz: τ . z)): σ × τ→τ

〈M,N〉: σ × τ (Λt. λf : σ→τ→t. fM N): σ × τ

3: 1 (Λt. λx: t. x): 1

Table 3.1: Translation of function, sum, and product terms

but it will suffice for the purposes of this section because we are only interested in

showing that the β reductions of λµν are strongly normalizing.

We will also need the existentially quantified type ∃t. σ. This may be expressed

in terms of ∀ and → as ∀s. (∀t. σ→s)→s, where s is a fresh type variable. A term

of the existential type ∃t. σ is like a pair 〈τ,M〉 of a type τ and a term M of type

{τ/t}σ; we will exploit this analogy by introducing (as in [17]) the syntactic sugar

〈τ,N〉 ≡ (Λs. λx: ∀t. σ→s. xτN): ∃t. σ

(λ〈t, x: σ〉.M) ≡ (λy: ∃t. σ. yυ(Λt. λx: σ.M)): (∃t. σ)→υ,

where in the latter definition the term M has type υ. It will be convenient to have

this pattern matching syntax for terms of (translated) product type as well; thus, the

F term (λ〈x: σ, y: τ〉.M) will be an abbreviation for

(λp: ∀t. (σ→τ→t)→t. pυ(λx: σ. λy: τ.M).

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 72

M : σ M : σ

foldµF (λx:F (µF).Λt. λf :F (t)→t. f(F (it t f) x)):F (µF)→µF

it τ
µF it τ ≡ (Λs. λf :F (s)→s. λx:µF. x s f)τ : (F (τ)→τ)→µF→τ

unfoldνF (λ〈t, 〈f : t→σ, x: t〉〉. F (new t f)(f x)): νF→F (νF)

new τ
νF new τ ≡ (Λs. λf : s→F (s). λx: s. 〈s, 〈f, x〉〉)τ : (τ→F (τ))→τ→νF

Table 3.2: Translation of inductive and projective terms

If we also write 〈N,P 〉 for (Λt. λf : σ→τ→t. f N P), then it is easy to see that both

of these pattern matching terms behave as expected under reduction, i.e.,

(λ〈t, x: σ〉.M)〈τ,N〉 −→+ {N/x}{τ/t}M

(λ〈x: σ, y: τ〉.M)〈N,P 〉 −→+ {P/y}{N/x}M.

The general translation for an inductive type µt. σ was essentially given by Böhm

and Berarducci [4], although they were mainly concerned with representing iteratively

defined functions over the term algebra of an algebraic signature, touching only briefly

on iteration at higher types. The corresponding translation for a projective type νt. σ

was given independently by Hasegawa [24] and Wraith [58]. Here are the translations

for the types:

µt. σ ≡ ∀t. (σ→t)→t

νt. σ ≡ ∃t. (t→σ)× t

≡ ∃t. ∀u. ((t→σ)→t→u)→u

The translations of the terms for these types are given in Table 3.2.

It is now a simple matter to verify that this translation preserves reduction in λµν
r .

Lemma 3.5.1 If M −→ N in λµν
r , then M −→+ N .

Proof. We will show two of the cases; the rest of the proof is entirely similar. We

CHAPTER 3. INDUCTIVE AND PROJECTIVE TYPES 73

omit most types for brevity.

[M,N](ι1P) ≡ (λx. xυM N)((λy.Λt. λf. λg. f y)P)

−→+ (Λt. λf. λg. f P) υM N

−→+ M P

≡ MP

unfold(new τ M N) ≡ (λ〈t, 〈f, x〉〉. F (new t f)(f x))

((Λs. λg. λy. 〈s, 〈g, y〉〉) τ M N)

−→+ (λ〈t, 〈f, x〉〉. F (new t f)(f x))〈τ , 〈M,N〉〉

−→+ F (new τ M)(M N)

≡ F (new τ M)(MN)

This lemma is precisely what we needed to complete the proof of strong normalization

for λµν
r , since if there were an infinite reduction sequence from a term M in λµν

r then

we would be able to construct an infinite reduction from M in F. System F is strongly

normalizing (see [17], for example), so we are done.

Chapter 4

Retractive Types and

Non-termination

The inductive and projective solutions are only defined if the functor F is covariant.

In general, however, we want to be able to solve RDEs where the type variable may

occur negatively; for example, to model the untyped λ-calculus we need to solve

equations such as X ∼= X→X. The standard approach, due to Smyth and Plotkin

[51], is to consider the category of embedding-projection pairs, also known as retracts.

Given a category C such that each homset C(A,B) is enriched with a partial order

structure ≤, we say that a pair (f :A→B, g:B→A) is a retract from A to B (and f is

an embedding, g is a projection) if f ; g = A (i.e., f followed by g is the identity arrow

on A) and g; f ≤ B. The category of retracts, CR, then has the same objects as C,

with retracts for the arrows. The advantage of considering this category is that mixed

variant functors on C may be replaced by covariant functors on CR, which allows us

to construct their least fixed point by taking a colimit of a suitable chain of retracts.

For lack of a better name, we refer to types constructed in this manner as retractive;

the notation we use is ρt. σ, or ρF .

In the category CPPOR, the terminal object 1 from CPPO serves as the initial

object, since (⊥,3) is a retract from 1 to any object A, where ⊥: 1→A is the least

arrow in the homset CPPO(1, A), being the constant function which picks out the

bottom element of A. We may thus construct a chain of retracts just as for the

74

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 75

inductive case in the previous chapter, using (⊥,3): 1→F1 in place of 2: 0→F0.

However, we are interested in CPOR, which has neither initial nor terminal objects.

To find a chain of retracts in CPOR, we observe that if F1 is pointed, then there is a

retract from 1 to F1, given as before by (⊥,3), since F1 has a bottom element; if F

preserves retracts, then we may continue the chain as usual — indeed, it is the same

chain as would have been formed in the subcategory CPPOR. The key to being able

to say which functors F will allow this construction is to introduce the lifting functor,

which adds a bottom element to a cpo. Formally, we define ⊥:CPO→CPO to be

UL, where L:CPO→CPPO⊥ is the left adjoint to the forgetful functor U from the

category CPPO⊥ of cppo’s and strict (i.e., bottom-preserving) functions into CPO.

The advantage of this categorical definition is that we can read off most of the desired

equations for terms of lifted type from the equations in the model, just as we may read

off the usual (β) and (η) rules from the categorical properties of cartesian closedness.

We will say that a functor F :CPO→CPO is (unconditionally) pointed if FX has

a bottom element for any object X; it is conditionally pointed if FX has a bottom

element whenever X does (a trivial example is the identity functor). The allowable

functors then are the conditionally pointed ones (since 1 is pointed, F1 will be)

which preserve retracts. We may now use the lifting functor to form a syntactic class

of functors which allow retractive fixed points.

When we have a type expression σ that is both covariant and conditionally pointed

in a free type variable t, we may form the three recursive types µt. σ, νt. σ, and ρt. σ.

An interesting fact in CPO is that the last two will always be isomorphic. If σ

is unconditionally pointed, then all three coincide. This result is related to recent

work of Barr, Freyd, and Fokkinga and Meijer [2, 14, 13], although it was arrived at

independently.

4.1 Syntax of the language λ⊥ρ

In this section we will describe the syntax for the types and terms of λ⊥ρ as an

extension to the language λµν of the previous chapter. We start by adding two type

constructors: the lifted type σ⊥, which corresponds to the operation which adds a

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 76

bottom element to a cpo, and the retractive type ρt. σ, which corresponds to the

recursive type found by the usual Smyth-Plotkin construction in CPOR.

Not all type expressions σ may appear as the body of a retractive type, just as the

bodies of inductive and projective types were restricted in the previous chapter to type

expressions strictly positive in the type variable being bound. To state the restriction

for retractive types (and also to relax the restriction for inductive and projective

types) we need to formally introduce the concept of a pointed type. Intuitively, a

pointed type is one which contains a bottom element, i.e., a least element with respect

to the information-content ordering on the type. The bottom element represents a

complete lack of information about the value, generally due to non-termination of an

evaluation function. Following our cpo interpretation of the type constructors, we

may see that the types 1 and σ⊥ are always pointed; it will also turn out that the

retractive type ρt. σ is always pointed. If the types σ and τ are both pointed, then

the product σ× τ will be pointed, since the pair consisting of the bottom elements of

σ and τ will be the least element under the pointwise ordering of σ×τ . Similarly, if τ

is pointed, then the function type σ→τ will be pointed for any σ, since the constant

bottom function is less defined than any other element of σ→τ . The empty type 0

and the disjoint sum σ + τ will never be pointed; we do not even consider a type

such as σ⊥ + 0 to be pointed, despite the fact that its cpo representation has a least

element, since an element of a sum type necessarily conveys at least the information

that it comes from, say, the first summand.

Since a recursive type µt. σ (or, mutatis mutandis, νt. σ or ρt. σ) is isomorphic

to the unfolded type {µt. σ/t}σ, it is reasonable to consider a recursive type to be

pointed whenever the body σ is. We have two choices when defining the pointedness

of type expressions with free variables. If σ is pointed no matter what types are

substituted for the free variables, then it is said to be unconditionally pointed . For

example, the type expression s→t⊥ is unconditionally pointed, since t⊥ is always a

pointed type expression. If the pointedness of σ depends on that of a free variable t,

as for example in τ→t, then it is conditionally pointed with respect to t. Thus, our

rule for inductive types will be that µt. σ is pointed if σ is unconditionally pointed.

We may go further with projective and retractive types, saying that νt. σ and ρt. σ

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 77

will be pointed if σ is conditionally pointed with respect to t. The reason for this

difference comes from the respective constructions of the recursive types in CPO: an

inductive type µF essentially results from an infinite number of applications of the

functor F to the initial object 0, while the projective and retractive types start from

1. If F is only conditionally pointed, i.e., F (τ) is only pointed if τ is, then none of

the finite approximations 0, F (0), F 2(0), . . . , to µF will be pointed; by continuity we

thus expect that µF itself will not be pointed.1 By contrast, all of the approximations

1, F (1), F 2(1), . . . , to νF and ρF are pointed, so the limit types will be as well.

The introduction of retractive types necessitates a refinement of the definition of

a type variable occurring covariantly in a type expression. Consider the expression

ρs. s→t; at first glance it seems to be covariant in t, even strictly positive. However,

one unfolding of this type expression produces (ρs. s→t)→t, in which t occurs both

positively and negatively. The rule must be that ρs. σ is covariant in t only if σ is

covariant in both s and t, or t does not occur at all in σ. This ensures that covariance

is preserved under unfolding.

We now state in words the full conditions on the bodies of recursive types; a

system of inference rules is given below. These conditions will be justified in the

final section of this chapter, which compares the three ways of defining recursive

types. An inductive type µt. σ or a projective type νt. σ is well-formed if t occurs

covariantly in σ and if each occurrence of t on the left of an arrow (hence on the

left of an even number of arrows) is contained in some (unconditionally) pointed

subterm of σ. For a retractive type ρt. σ to be well-formed, t may be of mixed

variance in σ, but σ must be conditionally pointed with respect to t. Thus, for ex-

ample, µt. (t→bool)→bool is not well-formed, since bool ≡ 1 + 1 is not pointed, but

µt. (t⊥→bool)→bool is. The intuitive reason for this is that the latter type is isomor-

phic to ((µs. ((s→bool)→bool)⊥)→bool)→bool ; the body of this modified recursive

type is pointed, so by the reasoning in section 4.5 the necessary inductive limit in

CPO may instead be computed in CPOR, where it is easy to show that the limit

1This is another reason why we do not recognize types such as σ⊥+0 as pointed. If F (t) = σ⊥+t,
then F (0) would be pointed, although F 2(0), F 3(0), . . . would not. The intuition we prefer is that
0 is the canonical unpointed type, in the sense that if F (0) is pointed then F (τ) is pointed for all τ ,
i.e., F is unconditionally pointed. This is supported by the first lemma below.

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 78

actually gives a fixed point. Note that, since the only pointed types in λµν are iso-

morphic to 1 (this may be proved by induction on the type formation rules, or by

observing that the types of λµν may be modelled by sets and, up to isomorphism, 1 is

the only pointed set), we did not lose any power in the previous chapter by restricting

the bodies of inductive and projective types to be strictly positive in the bound vari-

able. Also note that a retractive type will always be pointed, because the condition

on the body for it to be well-formed is the same as the condition for it to be pointed.

These rules for type formation may be summarized by the inference system in

Table 4.1. There are two kinds of judgement; the first, of the form Γ⊲type σ, asserts

that σ is a well-formed type expression given the context Γ; the second, of the form

Γ ⊲ ptd σ, asserts that σ is also pointed with respect to the context Γ. A context

is a set of assumptions of the form ∗ t, where * may be either type or ptd; thus

the judgement type s, ptd t ⊲ ptd s→t asserts (correctly) that the well-formed type

expression s→t is conditionally pointed with respect to t. If a judgement ∅⊲type σ is

provable, then σ must be a well-formed type, i.e., a closed type expression; similarly,

if ∅ ⊲ ptd σ is provable then σ is a pointed type. The side condition (∗) on the µ and

ν rules is that σ must be covariant with respect to t, and each occurrence of t on the

left of an arrow must be contained in a subterm τ of σ such that Γ, type t ⊲ ptd τ is

provable.

We may now confirm our intuition that 0 is in a sense canonical among unpointed

types:

Lemma 4.1.1 If ∅ ⊲ ptd F (0) is provable, then so is type t ⊲ ptd F (t); therefore,

F is unconditionally pointed iff F (0) is pointed.

Proof. From a proof of ∅ ⊲ ptd F (0) we may easily construct the desired proof of

type t ⊲ ptd F (t) by replacing each occurrence of the (: 0) axiom with the instance

type t ⊲ type t of the (: var) axiom, then renaming bound type variables away from

t and adding type t to contexts as necessary.

Now that we have extended the types of λµν , we will describe the term formation

rules corresponding to the additional types. For a retractive type ρF , we have terms

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 79

(: var) ∗ t ⊲ type t ptd t ⊲ ptd t (.var)

(: add var)
Γ ⊲ type σ

Γ, ∗ t ⊲ type σ

Γ ⊲ ptd σ

Γ, ∗ t ⊲ ptd σ
(.add var)

(: 0) ∅ ⊲ type 0

(: 1) ∅ ⊲ type 1 ∅ ⊲ ptd 1 (.1)

(: +)
Γ ⊲ type σ, Γ ⊲ type τ

Γ ⊲ type σ + τ

(:×)
Γ ⊲ type σ, Γ ⊲ type τ

Γ ⊲ type σ × τ

Γ ⊲ ptd σ, Γ ⊲ ptd τ

Γ ⊲ ptd σ × τ
(.×)

(:→)
Γ ⊲ type σ, Γ ⊲ type τ

Γ ⊲ type σ→τ

Γ ⊲ type σ, Γ ⊲ ptd τ

Γ ⊲ ptd σ→τ
(.→)

(:⊥)
Γ ⊲ type σ

Γ ⊲ type σ⊥

Γ ⊲ type σ

Γ ⊲ ptd σ⊥
(.⊥)

(:µ)
Γ, type t ⊲ type σ

Γ ⊲ type µt. σ
(∗)

Γ, type t ⊲ ptd σ

Γ ⊲ ptd µt. σ
(∗) (.µ)

(: ν)
Γ, ∗ t ⊲ type σ

Γ ⊲ type νt. σ
(∗)

Γ, ptd t ⊲ ptd σ

Γ ⊲ ptd νt. σ
(∗) (.ν)

(: ρ)
Γ, ptd t ⊲ ptd σ

Γ ⊲ type ρt. σ

Γ, ptd t ⊲ ptd σ

Γ ⊲ ptd ρt. σ
(.ρ)

Table 4.1: Type formation and pointedness rules

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 80

which give the two directions of the isomorphism ρF ≃ F (ρF):

(ρ Intro) ∅ ⊲ foldρF :F (ρF)→ρF

(ρ Elim) ∅ ⊲ unfoldρF : ρF→F (ρF).

We could also introduce terms analogous to itµF and newνF , representing the fact that

a retractive type is both an initial F -algebra and a terminal F -coalgebra; however,

the additional apparatus needed to define these terms is prohibitive — e.g., since

ρF is an initial F -algebra only in CPPOR, the subcategory of pointed cpo’s and

retractions, we would first have to prove that M :F (τ)→τ was a retraction before

constructing the term it τ
ρF M : ρF→τ . We avoid this complexity at the expense of

obtaining a less powerful proof system which does not directly reflect the categorical

interpretation. The fact that a retractive type is a fixed point of F is sufficient to

define a term fixσ: (σ→σ)→σ which acts as a fixed point operator on terms, i.e.,

fix σM →→ M(fix σM) for any term M : σ→σ. Using fix σ we may define it τ
ρF M and

new τ
ρF M as desired; the cost of being able to do this is that we must add a proof rule

for fixed point induction to (partially) substitute for the missing extensional rules

involving itρF and newρF .

Here is the definition of the least fixed point operator using retractive types. The

definition we use is based on Turing’s combinator Θ (see [1], for example):

(λxf. f(xxf))(λxf. f(xxf)).

This untyped term may be typed if x has the retractive type υ ≡ ρt. (t→(σ→σ)→σ),

where f will have type σ→σ for some pointed type σ, and t does not occur free in

σ. The self-application of x thus becomes well-formed when it is written unfoldυ xx.

Therefore, we make the following definition for fixσ: (σ→σ)→σ:

(λx: υ. λf : σ→σ. f(unfoldυ xxf))(foldυ(λx: υ. λf : σ→σ. f(unfoldυ xxf))).

To motivate the terms for the lifted type σ⊥, we first consider the subcategory

CPPO⊥ of pointed cpo’s and strict functions. If X is a pointed cpo, then it must

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 81

have a bottom element, ⊥X . The strict functions from X to Y are those which

preserve bottom, i.e., f :X→Y is strict if f(⊥X) = ⊥Y . If we let L:CPO→CPPO⊥

be the functor such that L(X) is the pointed cpo X with a bottom element added

and L(f :X→Y) is the function f extended by f(⊥L(X)) = ⊥L(Y), then there is

an isomorphism ϕ from the homset CPPO⊥(L(X), Y) to CPO(X,U(Y)), where

U :CPPO⊥→CPO is the obvious forgetful functor. That is, given any strict function

f :L(X)→Y , there is a unique function ϕ(f):X→U(Y), obtained by dropping the

bottom element from the domain; also, given any function g:X→U(Y) there is a

unique strict function ϕ−1(g):L(X)→Y , obtained by adding a bottom element to the

domain and requiring that ϕ−1(g) map it to the bottom of Y (which must be pointed

because it is an object of CPPO⊥). This isomorphism is natural in X and Y , hence

we have an adjunction L ⊣ U .

Lifting arises from this adjunction by taking the interpretation of σ⊥ to be the

application of the endofunctor UL to the object corresponding to σ. One way of

describing the adjunction L ⊣ U is by giving a natural transformation η:CPO
.
→ UL,

the unit of the adjunction, such that each arrow ηX :X→UL(X) is universal from X

to U , i.e., for any other arrow f :X→U(Y) there is a unique arrow g:L(X)→Y such

that f = U(g) ◦ ηX (see [32], for example). This arrow g is the strict function ϕ−1(f)

described above.

In general, an adjunction L ⊣ U for functors L: C→D and U :D→C creates a

monad in C. The monad endofunctor T is given by UL, the unit η: C
.
→ T is just the

unit of the adjunction, and the multiplication µ:TT
.
→ T is UεL, where ε:LU

.
→ D

is the counit of the adjunction; details may be found in [31, 32], for example. For our

purposes, it will be more useful to consider an alternate description of a monad, the

Kleisli triple, which is discussed in [37]. Instead of the multiplication µ, a Kleisli triple

provides an arrow f ∗:TX→TY for every arrow f :X→TY of C. The multiplication

µX may then be obtained from (idTX)∗; conversely, the arrow f ∗ may be defined in

terms of µ as µY ◦ Tf . In terms of the adjunction description above, the arrow f ∗ is

simply the arrow U(ϕ−1(f)) found by the universality of ηX .

A monad (T, η, ∗) may be represented in our language by the following pair of

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 82

term formation rules:

(T Intro)
Γ ⊲ M : σ

Γ ⊲ ⌊M⌋:Tσ

(T Elim)
Γ, x: σ ⊲ M :Tτ

Γ ⊲ (λ⌊x: σ⌋.M):Tσ→Tτ

The introduction rule represents composition with η, and the elimination rule is the

operation of constructing f ∗ from f .2 There is as usual some freedom about whether

to express functions externally via a free variable or internally via a binding operator;

we have chosen the form here because it fits in well with our pattern-matching syntax

(although in this case the term (λ⌊x: σ⌋.M) is part of the basic syntax instead of

syntactic sugar). Indeed, we will add ⌊P⌋ to our list of patterns, so that, for example,

let ⌊x: σ⌋ = M in N is an abbreviation for (λ⌊x: σ⌋. N)M . This let syntax is

essentially the same as that used by Moggi for his computational lambda calculus

[37].

In the special case that the category D is a subcategory of C and the functor

U :D→C is the inclusion, then we may regard the objects and arrows of D as being ob-

jects and arrows of C with some special property (namely, that they belong to the sub-

category). If we have judgements of the form ⊲“σ is in D” and Γ⊲“M : σ→τ is in D”,

then we may use this extra information to obtain a more expressive representation of

the adjunction L ⊣ U . We will have the same formation rule for the unit η:

(L Intro)
Γ ⊲ M : σ

Γ ⊲ ⌊M⌋:Lσ.

For the elimination rule, however, we may start with any arrow f :X→UY , for Y an

2Actually, because the rest of the variables in the context Γ are not affected by the elimination
rule, this correspondence only holds if we have a strong monad. A monad is strong if there is a
natural transformation t, the tensorial strength, such that the components tX,Y : X×TY→T (X×Y)
satisfy certain equations. Thus, if the interpretation of Γ, x: σ ⊲ M : Tτ is the arrow f : γ × σ→Tτ ,
then the correct interpretation of Γ ⊲ (λ⌊x: σ⌋. M): Tσ→Tτ is the arrow Λ(f∗ ◦ tγ,σ): γ→(Tσ→Tτ),
where Λ is the abstraction map. See [37] for more details.

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 83

object of D, and construct the arrow ϕ−1(f):LX→Y , which is actually an arrow in

D:

(L Elim)
Γ, x: σ ⊲ M : τ, ⊲“τ is in D”

Γ ⊲ (λ⌊x: σ⌋.M):Lσ→τ.

We should thus include in the rules for these special judgements the facts that “Lσ

is in D” for all types σ, and “(λ⌊x: σ⌋.M):Lσ→τ is in D”.

We are finally ready to introduce the term formation rules for lifting. The sub-

category D is CPPO⊥, so the judgement saying that a type σ is in D becomes the

side-condition that σ is pointed. The judgement that a term M : σ→τ is in D becomes

the statement that M is strict. To be able to reason about strict functions in the

proof system, we will need a term constant at each pointed type giving the bottom

element of that type:

(bottom)
∅ ⊲ ptd σ

∅ ⊲⊥σ: σ.

The natural transformation η is then represented in λ⊥ρ by the term formation rule

(⊥ Intro)
Γ ⊲ M : σ

Γ ⊲ ⌊M⌋: σ⊥.

The term demonstrating the universality of η is given by the rule

(⊥ Elim)
Γ, x: σ ⊲ M : τ, ∅ ⊲ ptd τ

Γ ⊲ (λ⌊x: σ⌋.M): σ⊥→τ ;

when we present the equational proof system in the next section, the statement that

this abstraction is strict will be given by the axiom

Γ ⊲ (λ⌊x: σ⌋.M)⊥σ⊥ = ⊥τ : τ.

In comparing our calculus to Moggi’s Computational Lambda Calculus, we note

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 84

that our treatment of lifting differs from Moggi’s in two important respects. First,

because we are dealing with the specific operation of lifting instead of an arbitrary

monad of computations, we will get more terms and more provable equations. Specifi-

cally, by introducing strict functions and defining lifting as an adjunction, we will find

some equations that hold for all pointed types, whereas if we only defined lifting as a

monad they would only hold for lifted types. The second difference is that in Moggi’s

system, all functions return values of the computation type; we require lifting to be

indicated more explicitly, so that functions are expressible which do not represent

computations of the lifted type (indeed, the entire sublanguage λµν is concerned with

defining functions which do not return lifted types, because they always terminate).

Now we may extend the definition of F (M) to cover lifted and retractive types:

• if F (t) = G(t)⊥, then F (M) = (λ⌊x:G(σ)⌋. ⌊G(M)x⌋);

• if F (t) = ρs.G(s, t), then

F (M) = fixF (σ)→F (τ)(λf :F (σ)→F (τ). foldρs. G(s,τ) ◦G(f,M) ◦ unfoldρs. G(s,σ)).

Note that, because t must occur covariantly in F (t), the type expression G(s, t)

in the retractive case must be covariant in both s and t. The term G(f,M) was

discussed in the proof that “functor” application preserves composition; it is equal to

both G(f, τ) ◦ G(F (σ),M) and G(F (τ),M) ◦ G(f, σ), by the usual definition of the

application of a bifunctor.

4.2 Equational proof system for λ⊥ρ

We will extend the proof system given in the previous chapter for λµν to provide a

formal semantics for the types and terms just introduced. In addition to proving

equations between terms, we will also need the auxiliary concept of an approximation

ordering among terms. The categorical interpretation of this ordering is that we have a

partial order structure on the homsets, reflecting the notion of increasing information

content among the functions. A category whose homsets are enriched in this way

is known as an O-category ([57]; see also [51]). For example, among functions in a

given homset whose codomain is pointed, the constant bottom function will be less

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 85

defined than all other functions; it is the least element of the homset. We will write

Γ ⊲ M ≤ N : σ for the statement that the term Γ ⊲ M : σ is less than or equal to

Γ⊲N : σ, i.e., that the arrow from γ to σ corresponding to M is less defined than that

corresponding to N .

Just as for equality, we need some structural rules for approximation. Note that

we need an extra “congruence” rule for strict abstraction, since it is a new binding

operator. We do not need to go back and introduce a corresponding equality rule,

since we may derive it from (≤ str abs) by using (≤ eq) and (sym) to split the

hypothesis into two approximations, applying the abstraction rule, then recombining

the approximations into the desired equality with (≤ antisym).

(≤ eq)
Γ ⊲M = N : σ

Γ ⊲ M ≤ N : σ

(≤ antisym)
Γ ⊲ M ≤ N : σ, Γ ⊲ N ≤M : σ

Γ ⊲M = N : σ

(≤ trans)
Γ ⊲ M ≤ N : σ, Γ ⊲ N ≤ P : σ

Γ ⊲ M ≤ P : σ

(≤ abs)
Γ, x: σ ⊲ M ≤ N : τ

Γ ⊲ (λx: σ.M) ≤ (λx: σ.N) : σ→τ

(≤ str abs)
Γ, x: σ ⊲ M ≤ N : τ

Γ ⊲ (λ⌊x: σ⌋.M) ≤ (λ⌊x: σ⌋. N) : σ⊥→τ
if τ is pointed

(≤ app)
Γ ⊲ M ≤ N : σ→τ, Γ ⊲ P ≤ Q : σ

Γ ⊲ MP ≤ NQ : τ

(≤ add var)
Γ ⊲ M ≤ N : σ

Γ, x: τ ⊲ M ≤ N : σ

We may use these rules and the previous equational axioms and rules to establish the

following analogue to the substitution lemma:

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 86

Lemma 4.2.1 If the approximations Γ, x: σ ⊲ M ≤ N : τ and Γ ⊲ P ≤ Q : σ are

provable, then so is Γ ⊲ {P/x}M ≤ {Q/x}N : τ .

Proof. The proof is identical to the equational version in the previous chapter, with

the addition of two applications of the (≤ eq) rule to establish that Γ ⊲ {P/x}M ≤

(λx: σ.M)P : τ and Γ ⊲ (λx: σ.N)Q ≤ {Q/x}N : τ are both true.

The two remaining rules for approximation establish some of the properties of

recursively defined functions. Of course, we cannot expect to obtain a proof system

which is complete for reasoning about equality between terms (or even programs) of

λ⊥ρ, since all partial recursive functions are representable in the language. Equality

of partial recursive functions is not recursively enumerable, so we can not have a

complete proof system.

The first of the remaining approximation rules asserts that ⊥σ is the least element

of pointed type σ:

(⊥ ≤)
∅ ⊲ ptd σ

Γ ⊲⊥σ ≤M : σ.

The other rule is a form of Scott’s fixed point induction ([50]; see also [33]). We only

consider the special case where the inclusive predicate is an approximation. This is

the most complex inference rule of the proof system; the second hypothesis should

be read as saying that if the approximation Γ ⊲ Pc ≤ Qc : τ is provable for some

fresh term constant c of type σ, then so is Γ ⊲ P (Mc) ≤ Q(Mc) : τ . Since c must

be a previously uninterpreted constant, this is proof-theoretically equivalent to the

(non-finitary) hypothesis that Γ ⊲ PN ≤ QN : τ implies Γ ⊲ P (MN) ≤ Q(MN) : τ ,

for every term Γ ⊲ N : σ.

(fpind)

Γ ⊲ P⊥σ ≤ Q⊥σ : τ,





Γ ⊲ Pc ≤ Qc : τ

Γ ⊲ P (Mc) ≤ Q(Mc) : τ





Γ ⊲ P (fixσM) ≤ Q(fix σM) : τ
c fresh

This rule is somewhat unsatisfactory for two reasons. First is its complexity; however,

it is a common rule used for proving facts about fixed points, and the examples below

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 87

will make frequent use of it in ways that no simpler rule we tried could handle.

Second, it is the only major rule without a direct categorical motivation; indeed,

since it asserts a fact about fix σ, which is only a defined term in λ⊥ρ, it seems quite

ad hoc. It would be more satisfying to derive this rule from a rule expressing the

fact that a retractive type is an initial algebra, but as we have already noted, there

are technical problems with this approach which we have not yet solved. The price

we will pay for using (fpind) is that we have not been able to prove some equations

about retractive types that would have followed easily from initiality; for example,

we do not know how to use fixed point induction to show that F (id) = id , when F

contains a retractive type (see below). The recent work of Crole and Pitts on their

FIX-Logic [12] may offer a solution to this difficulty, although we have not yet been

able to work out the precise relation between their system and ours.

To finish the proof system for λ⊥ρ, we need to present the (β) and (η) rules for the

new types. For a retractive type ρF , we simply take these to be the two equations

establishing that foldρF and unfoldρF are inverses:

(ρβ) ∅ ⊲ unfoldρF ◦ foldρF = idF (ρF) : F (ρF)→F (ρF)

(ρη) ∅ ⊲ foldρF ◦ unfoldρF = idρF : ρF→ρF.

In terms of our general discussion of monads in the previous section, the rules for

an arbitrary monad (T, η, ∗) would be

(Tβ) Γ ⊲ (λ⌊x: σ⌋.M)⌊N⌋ = {N/x}M : Tτ

(Tη) Γ ⊲ (λ⌊x: σ⌋. ⌊x⌋) = idTσ : Tσ→Tσ

(Tη′) Γ ⊲ (λ⌊y: τ⌋. N) ◦ (λ⌊x: σ⌋.M) = (λ⌊x: σ⌋. (λ⌊y: τ⌋. N)M) : Tσ→Tυ;

these are a direct translation of the equations f ∗ ◦ ηX = f , η∗X = idTX , and g∗ ◦ f ∗ =

(g∗ ◦ f)∗ for a Kleisli triple, as found in [37].

In the special case that we have an adjunction L ⊣ U where U :D→C is an inclusion

functor, we may improve on the monad equations by using information about the

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 88

objects and arrows of D:

(Lβ) Γ ⊲ (λ⌊x: σ⌋.M)⌊N⌋ = {N/x}M : τ

(Lβ ′) Γ ⊲ “(λ⌊x: σ⌋.M):Lσ→τ is in D”

(Lη)
Γ ⊲ “M :Lσ→τ is in D”

Γ ⊲ (λ⌊x: σ⌋.M⌊x⌋) = M : Lσ→τ
for x 6∈ FV(M).

The (Lβ) axiom asserts the commutativity of the diagram

X UL(X)-ηX

f
@

@
@

@@R
U(Y)

?

U(ϕ−1(f))

,

whereas the (Lη) rule establishes that ϕ−1(f) is the unique arrow which makes the

diagram commute; this is just the statement discussed above that ηX is universal from

X to U . The hypothesis on the (Lη) rule is necessary because the arrow represented

by M needs to be an arrow in D. Similarly, we also need the (Lβ ′) rule to establish

that the term representing ϕ−1(f) is in D. With the additional knowledge that the

subcategory D must be closed under formation of identities and composition, i.e., idσ

is in D if σ is in D and M ◦N is in D if M and N are in D, it is easy to show that

these rules for L imply those given for T above. For example, since idTσ is in D, we

find using (Lη) that (λ⌊x: σ⌋. ⌊x⌋) = (λ⌊x: σ⌋. idTσ⌊x⌋) = idTσ, which is (Tη).

The particular instance of these rules for lifting leads to the following:

(⊥β) Γ ⊲ (λ⌊x: σ⌋.M)⌊N⌋ = {N/x}M : τ

(⊥β ′) Γ ⊲ (λ⌊x: σ⌋.M)⊥σ⊥ = ⊥τ : τ

(⊥η)
Γ ⊲ M⊥σ⊥ = ⊥τ : τ

Γ ⊲ (λ⌊x: σ⌋.M⌊x⌋) = M : σ⊥→τ
for x 6∈ FV(M).

However, after some experience using these rules we discover that they are not quite

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 89

strong enough to represent our intuition about lifting. In particular, they do not

seem to reflect the desired property that the only elements of the lifted type σ⊥ are

the elements of σ plus bottom. Therefore, we will use the following more powerful

inference rule in place of (⊥η):

(⊥ext)
Γ ⊲ M⊥σ⊥ = N⊥σ⊥ : τ, Γ, x: σ ⊲ M⌊x⌋ = N⌊x⌋ : τ

Γ ⊲ M = N : σ⊥→τ.

It is easy to see that taking N ≡ (λ⌊x: σ⌋.M⌊x⌋) in this rule lets us derive (⊥η).

Two equations which intuitively hold for the lifting monad and yet which do not

seem provable without using (⊥ext) were suggested to us by Eugenio Moggi:

(λ⌊x: σ⌋. (λ⌊y: σ⌋.M)N)N = (λ⌊x: σ⌋. {x/y}M)N, x not in N

(λ⌊x: σ⌋. (λ⌊y: τ⌋.M)N)P = (λ⌊y: τ⌋. (λ⌊x: σ⌋.M)P)N, x not in N

y not in P

These equations are not true in arbitrary monads. The first one says that, for the

purposes of strict evaluation, repeating the evaluation step makes no difference (since

if the argument is going to diverge then it will do so the first time); the second says that

order of strict evaluation does not matter, as long as both N and P must be evaluated

eventually. These are very easy to prove using the “reasoning by cases” made available

by the (⊥ext) rule; for example, the terms (λz: σ⊥. (λ⌊x: σ⌋. (λ⌊y: σ⌋.M)z)z) and

(λz: σ⊥. (λ⌊x: σ⌋. {x/y}M)z) both are equal to ⊥τ when applied to ⊥σ⊥ , and similarly

both are equal to {w/x}{w/y}M when applied to ⌊w⌋, hence they are equal by

(⊥ext); apply each to N to get the first equation. We would of course prefer it if the

categorically motivated rules were enough to make such reasoning possible, but we

have not managed to do this.

We may now prove several useful lemmas about the terms of λ⊥ρ. As men-

tioned above, we are not able to prove that construction of the term F (M) pre-

serves identities or composition when F (t) contains a retractive type which depends

on t. The reason is that fixed point induction does not seem strong enough to prove

that, for example, the identity function idσ is the least fixed point of the functional

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 90

(λf : σ→σ. foldρG ◦G(f) ◦ unfoldρG), where G is a covariant functor which is assumed

to preserve identities by the inductive hypothesis. However, for practical purposes

this is not a problem. Since the only way F (t) can contain a retractive type ρs.G(s, t)

which depends on t is if G is covariant in both s and t, we will find in Section 4.5

that, at least with respect to creating isomorphic types in the cpo model, the retrac-

tive type may be replaced by the projective type νs.G(s, t), for which we have the

appropriate induction rule.

First of all, we will need to know how functor application interacts with approxi-

mation:

Lemma 4.2.2 Functor application is locally monotonic, i.e., if the approximation

Γ ⊲ M ≤ N : σ→τ is provable, then so is Γ ⊲ F (M) ≤ F (N) : F (σ)→F (τ).

Proof. We merely need to apply the substitution lemma for approximation to the

equation Γ, f : σ→τ ⊲ F (f) = F (f) : F (σ)→F (τ).

Now we may prove a partial extension of the fact that substituting a term in a type

behaves like functor application:

Lemma 4.2.3 If F (t) does not contain any subterms of the form ρs. υ, where t occurs

free in υ, then application of F to a term preserves composition and identities, i.e.,

F (M ◦N) = F (M) ◦ F (N) and F (id) = id.

Proof. Most of this lemma was proved in Section 3.2 as Lemma 3.2.3; we only need

to consider the case where F (t) is a lifted type expression. If F (t) = G(t)⊥, then

F (M) ◦ F (N) = F (M) ◦ (λ⌊x:G(σ)⌋. ⌊G(N)x⌋)

= (λ⌊x:G(σ)⌋. F (M)((λ⌊x:G(σ)⌋. ⌊G(N)x⌋)⌊x⌋))

= (λ⌊x:G(σ)⌋. (λ⌊y:G(τ)⌋. ⌊G(M)y⌋)⌊G(N)x⌋)

= (λx:G(σ). ⌊G(M)(G(N)x)⌋)

= F (M ◦N);

similarly, F (idσ) = (λ⌊x:G(σ)⌋. ⌊x⌋) = idF (σ).

The impact on previous results of the restriction on the form of F in this lemma is

that the proof of Lemma 3.2.4, which states that the defined terms for unfoldµF and

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 91

foldνF are inverses for the primitives foldµF and unfoldνF , is only valid for functors

of the restricted form. This provides another argument for including the inverses as

primitives.

As an example of the kind of proof that is almost trivial given fixed point induction,

we observe that we could have done away with the bottom constants ⊥σ for each

pointed type σ by defining them to be the least fixed points of the identity:

Lemma 4.2.4 If σ is pointed, then fixσ idσ = ⊥σ.

Proof. Since idσ⊥σ ≤ ⊥σ and, whenever idσ c ≤ ⊥σ, then also idσ(idσ c) ≤ ⊥σ,

it follows by (fpind) that fixσ idσ = idσ(fixσ idσ) ≤ ⊥σ. Using (⊥ ≤) we may change

this approximation into an equality.

We may easily obtain more information about the structure of the bottom elements

for pointed types which do not contain any retractive types:

Lemma 4.2.5 If all the necessary type expressions are pointed, then we may prove

• ⊥1 = 3;

• ⊥σ×τ = 〈⊥σ,⊥τ 〉;

• ⊥σ→τ = (λx: σ.⊥τ);

• ⊥µF = foldµF ⊥
F (µF);

• ⊥νF = new1
νF ⊥

1→F (1)⊥1.

Proof. All the cases follow the general pattern of using the substitution lemma for

approximation to build up a term which is equivalent by one of the extensional rules

to the desired bottom.

• ⊥1 = 3 is just an instance of the (1η) axiom.

• ⊥σ ≤ π1⊥σ×τ and ⊥τ ≤ π2⊥σ×τ , so by (≤ ⊥), substitution, and (×η) we find

⊥σ×τ ≤ 〈⊥σ,⊥τ 〉 ≤ 〈π1⊥σ×τ , π2⊥σ×τ 〉 = ⊥σ×τ .

• ⊥τ ≤ ⊥σ→τx, hence ⊥σ→τ ≤ (λx: σ.⊥τ) ≤ (λx: σ.⊥σ→τx) = ⊥σ→τ .

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 92

• ⊥F (µF) ≤ unfoldµF ⊥
µF , so similarly we find (using either (µη′) or, since F sat-

isfies the restrictions mentioned above, Lemma 3.2.4) ⊥µF ≤ foldµF ⊥
F (µF) ≤

foldµF (unfoldµF ⊥
µF) = ⊥µF . Note that if we were to use this as a defini-

tion for ⊥µF it would be well-founded, because we may show that, since F is

unconditionally pointed, the definition of ⊥F (µF) will not need the term ⊥µF .

The same reasoning would not hold if we tried to define ⊥νF as foldνF ⊥
F (νF),

or similarly for ⊥ρF , because F need only be conditionally pointed; for exam-

ple, νt. t is a pointed type which would lead to the non-well-founded definition

⊥νt. t = foldνt. t⊥
νt. t.

• We first note that F (⊥1→νF) is strict, because

⊥F (νF) ≤ F (⊥1→νF) ◦ ⊥F (1)

≤ (F (⊥1→νF) ◦ F (⊥νF→1))⊥F (νF)

≤ F (idνF)⊥F (νF)

= ⊥F (νF).

We may also show that unfoldνF is strict, in the same way we proved that

foldµF is strict in the previous item. Therefore, the equation unfoldνF ◦⊥
1→νF =

F (⊥1→νF) ◦ ⊥1→F (1) is true because both sides are equal to the bottom func-

tion ⊥1→F (νF). This is the form we need to apply (νη), resulting in ⊥1→νF =

new1
νF ⊥

1→F (1); applying both sides to ⊥1 and using the above characterization

of a bottom of functional type yields the desired result.

In the interpretation of λ⊥ρ in the category CPO, we observe that application of

the lifting functor to the initial object, i.e., the empty cpo, yields a terminal object,

i.e., a cpo with exactly one element. It is an interesting consequence of our rules for

lifting that this is true in all models of λ⊥ρ:

Lemma 4.2.6 The types 0⊥ and 1 are isomorphic.

Proof. We will show that the terms⊥0⊥→1 and⊥1→0⊥ are inverses. Since both terms

are strict, either way of composing them will result in a bottom function, hence we

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 93

only need to show that ⊥1→1 = id 1 and ⊥0⊥→0⊥ = id0⊥ . The first equation is trivial,

since by the (1η) rule, all terms of type 1→1 are equal to (λ3.3). For the second

equation, since both sides are strict functions, if we can prove x: 0 ⊲ ⊥0⊥→0⊥⌊x⌋ =

id0⊥⌊x⌋ : 0⊥, then by using the (derived) strict abstraction congruence rule and (⊥η)

we are done. But this last equation is true, since for any term x: 0 ⊲ M : σ we find by

(→β) and (0η) that M = (λx: 0.M)x = 2
σx is true, i.e., all such terms are equal.

This isomorphism is an instance of a general condition for showing that lifting

is a monad with zero, a concept introduced by Wadler [54]. The monad natural

transformations η: C
.
→ T and µ:TT

.
→ T receive their names “unit” and “multipli-

cation” in part because of an analogy with the corresponding concepts in a monoid;

the diagrams which must commute for a monad may then be seen as statements that

multiplication is associative and has the unit as an identity:

TTX TX-
µX

TTTX TTX-TµX

?

µTX

?

µX

TX

id

@
@

@
@@R

TX TTX-ηTX
TX�TηX

?

µX id

�
�

�
��	

.

Wadler observed that many common monads also have zeroes with respect to multi-

plication. In a category with a terminal object, we may present a zero for a monad by

giving a natural transformation ζ : 1
.
→ T such that the following diagram commutes:

TX

ζX

@
@

@
@@R

1 TTX-ζTX
T1�TζX

?

µX ζX ◦3T1

�
�

�
��	

,

where 3T1 is the unique arrow from T1 to 1. For the lifting monad, it is easy to

see that the bottom arrow from 1 to X⊥ will act as a zero, since the multiplication

µX collapses both the bottom element ⊥(X⊥)⊥ and the lifted bottom element ⌊⊥X⊥⌋

down to the bottom of X⊥.

This author and Michael Johnson [55] independently noticed the following special

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 94

case of this definition: if a category with a monad (T, η, µ) and a terminal object 1

also has an initial object 0 and if there is an isomorphism ⊥: 1→T0, then the natural

transformation whose X component is the arrow T2X ◦ ⊥: 1→TX will act as a zero

for the monad. This follows by a simple diagram chase, using the uniqueness of the

arrows 3X :X→1 and 2X : 0→X, plus the fact that 3T0 is an inverse for the given

arrow ⊥. The preceding lemma thus allows us to confirm the above observation

about the zero of the lifting monad, since the term corresponding to T2X ◦ ⊥ is

(λ⌊x:X⌋. ⌊2Xx⌋) ◦ ⊥1→0⊥ , which is equal to ⊥1→X⊥ by the (⊥β ′) rule.

4.3 The reduction system λ⊥ρr

We may now consider an operational semantics for λ⊥ρ, given as the obvious extension

to that presented for λµν . The full reduction system λ⊥ρ
r will still be confluent,

although it will of course no longer be normalizing. A notion of evaluating a term

must therefore be relative to some strategy for choosing a reduction path. We will

show that a lazy strategy is computationally adequate with respect to finding normal

forms of programs.

As usual, we obtain the reduction rules from the equational proof system by

directing the (β) axioms in the direction of decreasing complexity of terms. Here is

the list of rules:

(+β1)r [M,N](ι1P) −→ MP

(+β2)r [M,N](ι2P) −→ NP

(×β1)r π1〈M,N〉 −→ M

(×β2)r π2〈M,N〉 −→ N

(→β)r (λx: σ.M)N −→ {N/x}M

(µβ)r itµF M(foldµF P) −→ M(F (itµF M)P)

(νβ)r unfoldνF (newνF MP) −→ F (newνF M)(MP)

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 95

(µβ ′)r unfoldµF (foldµF M) −→ M

(νβ ′)r unfoldνF (foldνF M) −→M

(ρβ)r unfoldρF (foldρF M) −→M

(⊥β)r (λ⌊x: σ⌋.M)⌊N⌋ −→ {N/x}M

(⊥β ′)r (λ⌊x: σ⌋.M)⊥σ⊥ −→ ⊥τ .

As with λµν
r , we may leave the types and typing contexts implicit because we have

a subject reduction lemma; intuitively, types are only need at compile time.

Lemma 4.3.1 (Subject Reduction) If Γ ⊲ M : σ is well-formed and M −→→ N ,

then Γ ⊲ N : σ is also well-formed.

For the proof of confluence we will simply observe that λ⊥ρ
r is a regular combinatory

reduction system (after erasing the types, which the previous lemma has shown are

unnecessary for reduction). A combinatory reduction system (CRS), as introduced

by Klop [28], is a generalization of term rewriting systems to include variable binding

operators and substitution. Our system λ⊥ρ
r is a CRS with two binding forms, each

of which binds one variable: (λx. ·) and (λ⌊x⌋. ·). In fact it is a regular CRS, because

it is left-linear (no meta-variable appears more than once on the left-hand side of a

rule) and non-ambiguous (there are no critical pairs).

Theorem 4.3.2 (Confluence) If M −→→ N and M −→→ P , then there is a term

Q such that N −→→ Q and P −→→ Q.

Proof. Immediate from [28], Theorem II.3.11.

Klop also shows that if a regular CRS has the additional property that it is left-

normal , then it satisfies a standardization theorem. Recall from Chapter 2 that the

definition Klop gives for left-normal is that all of the constants (including binding

operators) are to the left of the meta-variables in all of the reduction rules. The

effect of this restriction is that if terms are evaluated from left to right, then all the

necessary redexes will be created in an orderly fashion.

Our system λ⊥ρ
r as it stands is not left-normal; for example, in the (+β1)r rule,

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 96

the constant ι1 appears to the right of the meta-variables M and N . To see con-

cretely how this would affect a left-to-right reduction strategy, consider the term

[id , fix id](id(ι13)). If we employed a strategy of strict left-to-right evaluation, then

the reduction would get hung in a loop trying to evaluate the right arm of the choice,

never reaching the (→β)r redex at the right, which must be evaluated to complete

the (+β1)r redex and reach the normal form 3.

The non-left-normal rules are (+β1)r, (+β2)r, (µβ)r, (⊥β)r, and (⊥β ′)r. There

are two easy ways to fix these and obtain a left-normal reduction system. Either we

may rearrange the syntax of terms, so that these rules become left-normal by Klop’s

definition, or we may modify the meaning of “left” with respect to the ordering of

subterms.

The first fix involves replacing the term constructors [·, ·]·, itµF ··, and (λ⌊·⌋. ·)·

with the following, two of which we have used (slightly modified) as abbreviations:

(+ Elim ′)
Γ ⊲ M : σ + τ, Γ ⊲ P : σ→υ, Γ ⊲ Q: τ→υ

Γ ⊲ case M of P,Q: υ

(µ Elim ′)
Γ ⊲ M :µF, Γ ⊲ N :F (τ)→τ

Γ ⊲ inductτ
µFMN : τ

(⊥ Elim ′)
Γ ⊲ M : σ⊥, Γ, x: σ ⊲ N : τ

Γ ⊲ let ⌊x: σ⌋ = M in N : τ
τ pointed.

The previously non-left-normal reduction rules now become

(+β1)
′
r case ι1N of P,Q −→ PN

(+β2)
′
r case ι2N of P,Q −→ QN

(µβ)′r inductµF (foldµF P)N −→ N(F (λx:µF. inductµFxN)P)

(⊥β)′r let ⌊x: σ⌋ = ⌊P ⌋ in N −→ {P/x}N

(⊥β ′)′r let ⌊x: σ⌋ = ⊥ in N −→ ⊥,

which are all left-normal.

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 97

The other solution is to modify the left-to-right order of evaluation by altering

the definition of when one redex, R, is to the left of another, S, written R ≺ S. The

effect of this will be to direct reduction into the appropriate part of a potential redex

(for example, the test P of a choice expression [M,N]P) so that the reduction does

not get needlessly sidetracked. The definition of R ≺ S that we start with is that a

subterm R of a term M (which we write R ⊆ M ; if R 6≡ M then as usual we write

R ⊂ M) is to the left of another subterm S ⊆ M if one of the following conditions

holds:

• S ⊂ R;

• R ⊆M1 and S ⊆M2 for some subterm [M1,M2] of M ;

• R ⊆M1 and S ⊆M2 for some subterm 〈M1,M2〉 of M ; or

• R ⊆M1 and S ⊆M2 for some subterm M1M2 of M .

Our modification will be to the last clause, based on whether or not the term M1 is

a strict abstraction, choice, or iterated function:

• if R ⊆M1 and S ⊆M2 for some M1M2 ⊆M , then R ≺ S if M1 6≡ (λ⌊x: σ⌋. P),

[P,Q], or itµF P , otherwise S ≺ R.

Now, following Klop, we may define standard reductions and the process of stan-

dardization. If we have a reduction sequence R:M0 −→ M1 −→ . . ., then let us form

a labelled sequence by the following process: if the redex contracted in the term Mi

is R, then we label every redex S ≺ R; descendents of labelled redexes keep their

labels until they are themselves reduced. For example, here is the labelled form of a

reduction from a term discussed above:

[id , fix id](id(ι13))∗ −→→ [id , id(fix id)](id(ι13))∗

−→ ([id , id(fix id)](ι13))∗

−→ ([id , fix id](ι13))∗

−→ id 3

−→ 3.

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 98

A standard reduction is one in which no labelled redexes are contracted. The above

reduction is not standard because two labelled redexes contract, producing the second

and fourth lines respectively. An equivalent standard reduction is

[id , fix id](id(ι13)) −→ [id , fix id](ι13)

−→ id 3

−→ 3.

An anti-standard pair of reduction steps is a reduction R1:M0 −→ M1 −→ M2

which is not standard. The process of meta-reduction is the replacement in a reduction

R of an anti-standard pair R1 by an equivalent standard reduction R2 to obtain a

new reduction R′; we write R =⇒ R′. For example, in the reduction sequence

R: (λx: σ. id〈x, x〉)(id 3) −→ (λx: σ. id〈x, x〉)3 −→ id〈3,3〉 −→ 〈3,3〉,

the first two reduction steps form an anti-standard pair; the pair may be replaced by

a standard reduction to obtain the reduction sequence

R′: (λx: σ. id〈x, x〉)(id 3) −→ id〈id 3, id 3〉 −→ id〈3, id 3〉

−→ id〈3,3〉 −→ 〈3,3〉,

which is intuitively closer to a standard reduction than R. One can imagine how

repeating this process of meta-reduction will eventually produce a standard reduction

sequence.

This intuition is formalized by the following theorem:

Theorem 4.3.3 (Standardization) For every λ⊥ρ
r reduction sequence R:M −→→

N there is a standard reduction sequence Rst :M −→→ N , obtained as a normal form

of meta-reduction.

Proof. See [28], Section II.6.2.8. In fact, Klop does not give the proof for the

fully general case of a left-normal regular combinatory reduction system, he only

indicates that it is possible. However, a minor modification to λ⊥ρ
r will put it in

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 99

the form of a left-normal term rewriting system plus lambda abstraction, for which

Klop does provide a full proof. The required change is that the binding operation

of strict abstraction (λ⌊x: σ⌋.M) be replaced by the ordinary lambda abstraction

(λz: σ⊥. test
τ
σz(λx: σ.M)), where test τ

σ: σ⊥→(σ→τ)→τ is a new function constant.

The action of test τ
σ is given by the following reduction rules:

test τ
σ⌊M⌋N −→ NM

test τ
σ⊥N −→ ⊥;

that is, it strictly evaluates the first argument and then applies the second argument

to the result. It is easy to see that this modified system will have essentially the same

reduction behavior as λ⊥ρ
r ; in particular, the standard reductions in the two systems

will be isomorphic.

As a corollary we find that a leftmost strategy for λ⊥ρ
r is normalizing, either

using the straight definition of “left” and the modified syntax or using the adjusted

definition of “left” and the original syntax:

Corollary 4.3.4 (Normalization) If there is a λ⊥ρ
r reduction M −→→ N where N

is a normal form, then the reduction sequence starting at M in which the leftmost

redex is contracted at each step will eventually reach N .

Proof. By the Standardization theorem, there is a standard reduction Rst from M

to N . Suppose that there is some step in Rst in which the contracted redex is not

leftmost; then since the reduction is standard, no descendents of the redexes to the left

can ever be contracted, nor can they be erased, hence N must contain uncontracted

redexes, contradicting the fact that it is a normal form. Therefore Rst is the desired

normal reduction sequence.

Note that this result is weaker than the computational adequacy results of the

previous two chapters. If there is some reduction from a term to a normal form then

we are guaranteed to find it, but there is no guarantee that the reduction system is

strong enough to produce a normal form whenever the initial term is provably equal

to one. Indeed, consider the term fixσ idσ; it is provably equal to ⊥σ, but there is

no λ⊥ρ
r reduction between these terms. The reason for this is that we added several

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 100

ad hoc proof rules, such as fixed point induction and reasoning by cases for lifted

types, which were necessary to get a strong enough proof system but which were not

categorically motivated. It is a subject of future research to find categorically-based

proof rules which permit similarly powerful arguments about programs and which are

better-behaved than the ad hoc rules given here.

4.4 Example: call-by-name and call-by-value

One historical motivation for adding the capability to solve mixed-variant RDEs is

the desire to find models for the untyped lambda calculus, Λ. That is, we wish to have

a type u of untyped lambda terms, along with a translation U into a typed calculus

such that U(M) is a term of type u that has the same behavior (in some sense) as

the untyped term M .

A first attempt to model Λ in λ⊥ρ might take u ≡ ρt. t→t; this would allow us to

translate the application MN as unfoldu U(M)U(N). Unfortunately, since 1 ∼= 1→1

and 1 is initial in CPPOR, the interpretation of u is just the trivial cpo. The usual

semantic approach is to build the fixed point on top of a domain which has some

non-trivial structure to begin with (see for example [20, 51]). We may use a much

simpler syntactic reformulation to avoid the trivial solution by explicitly introducing

extra structure with lifting. The result we will discuss in this section is that two

particularly obvious choices for u using lifting correspond to call-by-name and call-

by-value versions of Λ (see [42] for the original discussion of call-by-name and call-

by-value; a presentation of domain models for these calculi which are essentially the

same as the types n and v below is in [5]).

The type n ≡ ρt. (t→t)⊥ adds to u the structure representing the possibility

that a term might be undefined after an unfolding. Unfolding a term of type n will

correspond to getting the head of an application into the form of an abstraction;

evaluating the head may not terminate, and the bottom element takes care of this

possibility. If we do get the head into the form of an abstraction, then that corresponds

to obtaining the lift of a function of type n→n after the unfolding. Such a function

will necessarily produce a term of type n when applied to any argument of type n —

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 101

it does not need to perform any extra evaluation on the argument; for this reason,

the type n corresponds to a call-by-name calculus.

By contrast, the type v ≡ ρt. t→t⊥ will correspond to a call-by-value calculus,

because once the head has unfolded to a function, it is only a partial function (by the

standard interpretation of v→v⊥ as the type of partial functions from v to v); the

result of application may not terminate. Since we also have the possibility that simply

trying to get the head of the application into abstraction form may not terminate,

the type we will actually use to model terms of the call-by-value calculus is v⊥.

To put this discussion in more concrete terms, consider the following translations

from Λ to λ⊥ρ:

N (x) ≡ x:n

N (λx.M) ≡ foldn⌊λx:n.N (M)⌋:n

N (MN) ≡ AppN N (M)N (N):n

V(x) ≡ ⌊x⌋: v⊥

V(λx.M) ≡ ⌊foldv(λx: v.V(M))⌋: v⊥

V(MN) ≡ AppV V(M)V(N): v⊥,

where AppN ≡ (λ foldn⌊f :n→n⌋. f) and AppV ≡ (λ⌊foldv(f : v→v⊥)⌋. λ⌊z: v⌋. fz)

(recall that, in our pattern matching syntax, (λ foldτ P.M) is shorthand for the term

(λx: τ. (λP.M)(unfold τ x))). In evaluating an application MN in either call-by-name

or call-by-value, M must first reduce to an abstraction. The strict abstractions on

f in the App combinators will ensure that this evaluation takes place first. In the

case of the call-by-value translation, the additional strict abstraction on z forces the

evaluation of the argument next; in call-by-name, the function f is simply applied to

the argument right away.

To formalize the connection with the call-by-name and call-by-value calculi, recall

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 102

from [42] that the reductions
cbn
−→→ and

cbv
−→→ are built up from the axioms

(β) (λx.M)N −→ {N/x}M

(βV) (λx.M)V −→ {V/x}M, V a value,

respectively, where a value is either a variable or an abstraction (we will omit the

optional set of constants and δ-rules for simplicity). Then we may prove the following

theorem:

Theorem 4.4.1 M
cbn
−→→ N iff N (M) −→→ N (N), and M

cbv
−→→ N iff V(M) −→→

V(N).

Proof. The forward direction of each part proceeds by induction on the length

of the reduction; we only need to show that N ((λx.M)N) −→→ N ({N/x}M) and

V((λx.M)V) −→→ V({V/x}M), for V a value. We will only show the details of the

second, since the first is very similar (and easier):

V((λx.M)V) ≡ AppV ⌊foldv(λx: v.V(M))⌋V(V)

−→→ (λ⌊z: v⌋. (λx: v.V(M))z)V(V);

since V is a value, V(V) must be of the form ⌊N⌋ for some term N , hence the strict

application may reduce, leading to {N/x}V(M). Now, examination of the definition

of V(M) reveals that this substitution is identical to the term V({V/x}M), as desired.

In the other direction we will make use of the standardization theorem of the

previous section. Again, we will only give the details for the more complex call-by-

value case. We will proceed by induction on the structure of M and the length of

the reduction sequence. If M ≡ x, then V(M) ≡ ⌊x⌋, which is a normal form, so

M ≡ N and we are done. If M ≡ (λx. P), then V(M) ≡ ⌊foldv(λx: v.V(P))⌋, so

the only possible reduction is to ⌊foldv(λx: v.Q)⌋. For this to be V(N) we must have

that Q ≡ V(P ′) for N ≡ (λx. P ′); by the induction hypothesis then we know that

P
cbv
−→→ P ′ and hence M

cbv
−→→ N .

The remaining case is that M ≡ PQ. If V(M) ≡ AppV V(P)V(Q) reduces to

V(N), then either V(N) ≡ AppV V(P ′)V(Q′), whence M
cbv
−→→ P ′Q′ ≡ N by the

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 103

induction hypothesis, or the AppV must participate in the reduction. For this to be

true, the standardization of the reduction must look like the following:

AppV V(P)V(Q) −→→ AppV ⌊foldv(λx: v.V(P ′))⌋V(Q)

−→→ (λ⌊z: v⌋. (λx: v.V(P ′))z)V(Q)

−→→ (λ⌊z: v⌋. (λx: v.V(P ′))z)⌊Q1⌋

−→→ {Q1/x}V(P ′) ≡ V({Q′/x}P ′)

−→→ V(N),

where V(Q′) ≡ ⌊Q1⌋. This uses the fact that in any standard reduction from V(Q),

the first term in the reduction sequence which is of the form ⌊Q1⌋ must in fact be

V(Q′) for some value Q′. By the induction hypothesis we thus have the corresponding

reduction sequence

M ≡ PQ
cbv
−→→ (λx. P ′)Q

cbv
−→→ (λx. P ′)Q′

cbv
−→ {Q′/x}P ′

cbv
−→→ N.

4.5 Comparison of recursive types

In this section we will prove the results mentioned in the introduction to this chapter

about the relations between the recursive types in the cpo model. Although we only

treat the case of CPO, we believe that the relations hold in many similar categories.

A more abstract account is given by Barr [2], who shows that the initial and terminal

fixed points of a functor F will coincide under fairly general conditions on F ; he

refers to such functors as algebraically compact . For the specific case of CPO, Barr’s

theorem proves that all of our pointed functors are algebraically compact, therefore

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 104

µF ∼= νF . This is one part of our result below, which we obtained independently.

Fokkinga and Meijer [13] also establish a similar result, although since they only

work with pointed types they find that the initial and terminal fixed points always

correspond (for suitably continuous functors).

We have already described how to construct µF and νF in the category CPO,

and how we may use the Smyth-Plotkin technique to construct ρF in the category

CPOR of retracts. Now let us use the names of terms in λ⊥ρ to represent the actual

functions on cpo’s which model them. For example, if we have constructed the cpo

µF , then we have an isomorphism foldµF :F (µF)→µF . Also, although we did not

introduce the terms into our language, let us use itρF : (F (τ)→τ)→ρF→τ for the map

which describes the fact that ρF is an initial F -algebra in CPOR, and similarly for

newρF : (τ→F (τ))→τ→ρF .

Theorem 4.5.1 If νF is pointed, then νF ∼= ρF ; if µF is pointed, then µF ∼= νF ∼=

ρF .

Proof. If νF is pointed, then the isomorphism unfoldνF and its inverse foldνF

provide a retract in CPOR both from νF to F (νF) and also from F (νF) back to

νF . Therefore we have retracts itρF foldνF and new ρF unfoldνF going both ways

between νF and ρF . If there are two cpo’s X and Y and each has a retract into the

other, then they must be isomorphic, hence νF and ρF are isomorphic types.

Similarly we may show that if µF is pointed then it is isomorphic to ρF . Now,

since µF pointed implies νF pointed, we must have in this case that all three recursive

types are isomorphic.

As an application of this theorem, we will provide an informal semantic justi-

fication of our definition in Section 4.1 that inductive and projective types will be

well-formed if the body is covariant in the bound type variable and if every occurrence

of the bound variable to the left of an arrow is contained in a pointed subexpression.

The base case is that either the body is strictly positive, so there will be no cardinality

problems to prevent us from constructing the limit or colimit essentially as we would

in Set, or the body is pointed, in which case the above theorem shows that we could

just as well have used the Smyth-Plotkin construction to form the retractive type.

CHAPTER 4. RETRACTIVE TYPES AND NON-TERMINATION 105

To form an arbitrary inductive type µF (or a projective type νF) we may first

decompose the body into a strictly positive context σ[] and a sequence of pointed

type expressions τ1, . . . , τn in which the type variable t may occur to the left of an

even number of arrows. Thus F (t) ≡ σ[τ1, . . . , τn]. Now, by a standard equivalence

for recursive types, we know that µt. F (t) ∼= µt. µs. σ[{s/t}τ1, τ2, . . . , τn], where s is

a new type variable. Unfolding the inner inductive type once results in the type

expression µt. σ[{µs. σ[τ ′1, τ2, . . . , τn]/s}τ ′1, τ2, . . . , τn], where τ ′1 ≡ {s/t}τ1.

By considering the unfoldings of the inner expression {µs. σ[τ ′1, τ2, . . . , τn]/s}τ ′1, we

may see that it is equivalent to the type µr. {σ[r, τ2, . . . , τn]/s}τ ′1; let us call this υ1.

Note that since τ1 was pointed, this type will also be pointed, hence we could have con-

structed it with ρ instead of µ. Now, repeating this process for τ2 through τn, we find

that µt. F (t) ∼= µt. σ[υ1, . . . , υn], where υk ≡ µr. {σ[υ1, . . . , υk−1, r, τk+1, . . . , τn]/t}τk.

The body of this type is strictly positive in t, and each υk is pointed, so it is a

well-formed inductive type.

As an example of this construction, consider the type µt. ((t→bool)→bool)⊥ + t.

It is equivalent to µt. υ+ t, where υ ≡ µr. (((r+ t)→bool)→bool)⊥, which can be seen

to correspond to a “partial” unfolding of the body to bring the pointed subterm to

the outside.

Chapter 5

Conclusions

We have considered three functional programming languages based on the typed

lambda calculus plus structured data types and recursive definitions of either functions

or types. For each we have presented an equational proof system which includes

extensional rules for reasoning about equivalences of types, as well as sets of reduction

rules based on the equations. We have seen the interaction of recursion with the

extensional rules, and in each case we have determined that an appropriate reduction

system for evaluating the results of programs should not include the extensional rules.

One of our languages, λµν , considered in Chapter 3, could define only total func-

tions; we showed that the class of definable functions properly includes those that

are provably total in Peano Arithmetic. The other two languages, PCF and λ⊥ρ,

considered in Chapters 2 and 4 respectively, are each powerful enough to express all

partial recursive functions. We proved for both of these languages that, under certain

conditions, a leftmost reduction strategy is complete for finding normal forms relative

to the “ideal” non-deterministic reduction system.

For the language PCF, we obtained a confluent reduction system for any set of

confluent, left-linear algebraic rules defining the set of observable types. This reduc-

tion system is adequate for finding results of programs, relative to provability in the

full equational proof system, including the extensional rules. Since the interaction of

the surjective pairing contraction rule with the fixed-point operator causes confluence

to fail even without any algebraic rules, this result provides a theoretical basis for

106

CHAPTER 5. CONCLUSIONS 107

the folkloric belief that the extensional rules are not “computational.” In addition,

we showed that the extensional rules remain sound for reasoning about observational

congruence.

We did not manage to prove such an adequacy theorem for λ⊥ρ; the difficulty came

in having to deal with several ad hoc proof rules for retractive and lifted types. For

the sublanguage λµν , where all of the proof rules had clear categorical motivations,

however, we were able to prove an adequacy theorem. A future line of research is to

investigate alternative proof systems for languages similar to λ⊥ρ for which we can

establish adequacy.

We did prove a standardization theorem for λ⊥ρ, which allowed us to investigate

use of the lifted and retractive types to model call-by-name and call-by-value versions

of the untyped lambda calculus. A question which we did not have time to pursue is

whether we can also model the partial lambda calculus of Moggi [36] in this manner.

Other open problems which remain are to find a more exact characterization of the

functions definable in λµν , to extend the class of algebraic rules which support a left-

most reduction strategy for PCF, and to examine the effect of adding computational

monads other than lifting to λ⊥ρ in the manner of Moggi and Wadler [37, 54].

Bibliography

[1] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, 1984.

[2] M. Barr. Algebraically compact functors. Manuscript, 1991.

[3] G. Berry and P.L. Curien. Sequential algorithms on concrete data structures.

Theoretical Computer Science, 20:265–321, 1982.

[4] C. Böhm and A. Berarducci. Automatic synthesis of typed Λ-programs on term

algebras. Theoretical Computer Science, 39:135–154, 1985.

[5] G. Boudol. Lambda-calculi for (strict) parallel functions. Technical Report 1387,

INRIA, January 1991.

[6] V. Breazu-Tannen. Combining algebra and higher-order types. In Third Annual

IEEE Symposium on Logic in Computer Science, pages 82–90, 1988.

[7] V. Breazu-Tannen and J.H. Gallier. Polymorphic rewriting conserves algebraic

strong normalization and confluence. In G. Ausiello, M. Dezani-Ciancaglini, and

S. Ronchi Della Rocha, editors, 16th International Colloquium on Automata,

Languages, and Programming, volume 372 of Lecture Notes in Computer Science,

pages 137–159. Springer-Verlag, 1989.

[8] W. Buchholz and S.S. Wainer. Provably computable functions and the fast

growing hierarchy. In S.G. Simpson, editor, Logic and Combinatorics, volume 65

of Contemporary Mathematics, pages 179–198. American Mathematical Society,

1987.

108

BIBLIOGRAPHY 109

[9] A. Church. The Calculi of Lambda Conversion. Princeton Univ. Press, 1941.

Reprinted 1963 by University Microfilms Inc., Ann Arbor, MI.

[10] E.A. Cichon and S.S. Wainer. The slow-growing and the Grzegorczyk hierarchies.

Journal of Symbolic Logic, 48(2):399–408, 1983.

[11] T. Coquand and C. Paulin. Inductively defined types. In P. Martin-Löf and

G. Mints, editors, COLOG-88, volume 417 of Lecture Notes in Computer Science,

pages 50–66. Springer-Verlag, 1990.

[12] R.L. Crole and A.M. Pitts. New foundations for fixpoint computations. In Fifth

Annual IEEE Symposium on Logic in Computer Science, pages 489–497, 1990.

[13] M.M. Fokkinga and E. Meijer. Program calculation properties of continuous

algebras. Technical Report CS-R9104, CWI, January 1991.

[14] P. Freyd. Recursive types reduced to inductive types. In Fifth Annual IEEE

Symposium on Logic in Computer Science, pages 498–507, 1990.

[15] J.H. Gallier. What’s so special about Kruskal’s theorem and the ordinal Γ0?

A survey of some results in proof theory. Annals of Pure and Applied Logic,

53(3):199–260, 1991.

[16] J.-Y. Girard. Une extension de l’interpretation de Gödel à l’analyse, et son

application à l’élimination des coupures dans l’analyse et la théorie des types.

In J.E. Fenstad, editor, Second Scandinavian Logic Symposium, pages 63–92.

North-Holland, 1971.

[17] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1989.

[18] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-

punktes. Dialectica, 12:280–287, 1958. An English translation by W. Hodges

and B. Watson appeared in Journal of Philosophical Logic, 9:133–142, 1980.

BIBLIOGRAPHY 110

[19] J. Greiner. Programming with inductive and co-inductive types. Technical Re-

port CMU-CS-92-109, Carnegie Mellon University, January 1992.

[20] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science. North-Holland, 1990.

[21] T. Hagino. A Categorical Programming Language. PhD thesis, University of

Edinburgh, 1987.

[22] T. Hagino. A typed lambda calculus with categorical type constructors. In

Category Theory in Computer Science, pages 140–157, 1987.

[23] J.Y. Halpern, J.H. Williams, E.L. Wimmers, and T.C. Winkler. Denotational

semantics and rewrite rules for FP. In 12th ACM Symposium on Principles of

Programming Languages, pages 108–120, January 1985.

[24] R. Hasegawa. Parametric polymorphism and internal representations of recursive

type definitions. Master’s thesis, Research Institute for Mathematical Science,

Kyoto University, 1989.

[25] P. Henderson. Functional Programming. Prentice-Hall, 1980.

[26] B.T. Howard and J.C. Mitchell. Operational and axiomatic semantics of PCF.

In ACM Conference on Lisp and Functional Programming, pages 298–306, 1990.

[27] C.B. Jay. Long βη normal forms and confluence. Technical Report ECS-LFCS-91-

183, Laboratory for Foundations of Computer Science, Department of Computer

Science, University of Edinburgh, October 1991.

[28] J.W. Klop. Combinatory Reduction Systems. PhD thesis, University of Utrecht,

1980. Published as Mathematical Center Tract 129.

[29] J.W. Klop and R.C. de Vrijer. Unique normal forms for lambda calculus with

surjective pairing. Information and Computation, 80(2):97–113, 1989.

BIBLIOGRAPHY 111

[30] G. Kreisel. Interpretation of analysis by means of constructive functionals of

finite types. In A. Heyting, editor, Constructivity in Mathematics, pages 101–

128. North-Holland, 1959.

[31] J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic, vol-

ume 7 of Cambridge Studies in Advanced Mathematics. Cambridge University

Press, 1986.

[32] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate

Texts in Mathematics. Springer-Verlag, 1971.

[33] Z. Manna, S. Ness, and J.E. Vuillemin. Inductive methods for proving properties

of programs. In ACM Conference on Proving Assertions about Programs, pages

27–50, 1972. Proceedings appeared as SIGPLAN Notices, 7(1), 1972.

[34] L.W. Miller. Normal functions and constructive ordinal numbers. Journal of

Symbolic Logic, 41(2):439–459, 1976.

[35] J.C. Mitchell. Type systems for programming languages. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science. North-Holland, 1990.

[36] E. Moggi. The Partial Lambda-Calculus. PhD thesis, University of Edinburgh,

1988.

[37] E. Moggi. Computational lambda-calculus and monads. In Fourth Annual IEEE

Symposium on Logic in Computer Science, pages 14–23, 1989.

[38] D. Nesmith. The Church-Rosser property in higher-order rewrite systems.

Manuscript, 1989.

[39] M.H.A. Newman. On theories with a combinatorial definition of “equivalence”.

Annals of Mathematics, 43(2):223–243, 1942.

[40] S.L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall, 1987.

BIBLIOGRAPHY 112

[41] G.D. Plotkin. The λ-calculus is ω-incomplete. Journal of Symbolic Logic, 39:313–

317, 1974.

[42] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Com-

puter Science, 1:125–159, 1975.

[43] G.D. Plotkin. LCF considered as a programming language. Theoretical Computer

Science, 5:223–255, 1977.

[44] G.D. Plotkin. Denotational semantics with partial functions. Lecture notes,

C.S.L.I. Summer School, Stanford, 1985.

[45] G. Pottinger. The Church-Rosser theorem for typed λ-calculus with surjective

pairing. Notre Dame Journal of Formal Logic, 22(3):264–268, 1981.

[46] J.C. Reynolds. Towards a theory of type structure. In Paris Colloquium on

Programming, volume 19 of Lecture Notes in Computer Science, pages 408–425.

Springer-Verlag, 1974.

[47] H.E. Rose. Subrecursion: Functions and Hierarchies, volume 9 of Oxford Logic

Guides. Oxford University Press, 1984.

[48] H. Schwichtenberg. Elimination of higher type levels in definitions of primitive

recursive functions by means of transfinite recursion. In H.E. Rose and J.C. Shep-

herdson, editors, Logic Colloquium, ’73, pages 279–303. North-Holland, 1975.

[49] H. Schwichtenberg. Definierbare funktionen im λ-Kalkül mit typen. Archiv für

mathematische Logik und Grundlagenforschung, 17:113–114, 1976.

[50] D.S. Scott. A type-theoretic alternative to CUCH, ISWIM, OWHY. Manuscript,

1969.

[51] M. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain

equations. SIAM Journal on Computing, 11:761–783, 1982.

[52] R. Statman. The typed lambda calculus is not elementary recursive. Theoretical

Computer Science, 9:73–81, 1979.

BIBLIOGRAPHY 113

[53] D.A. Turner. Miranda: a non-strict functional language with polymorphic types.

In IFIP International Conference on Functional Programming and Computer

Architecture, Nancy, volume 201 of Lecture Notes in Computer Science. Springer-

Verlag, 1985.

[54] P. Wadler. Comprehending monads. In ACM Conference on Lisp and Functional

Programming, pages 61–78, 1990.

[55] P. Wadler. Private communication, March 1991.

[56] S.S. Wainer. Slow growing versus fast growing. Journal of Symbolic Logic,

54(2):608–614, 1989.

[57] M. Wand. Fixed-point constructions in order-enriched categories. Theoretical

Computer Science, 8:13–30, 1979.

[58] G.C. Wraith. A note on categorical datatypes. In D.H. Pitt, D.E. Rydeheard,

P. Dybjer, A.M. Pitts, and A. Poigné, editors, Category Theory and Com-

puter Science, volume 389 of Lecture Notes in Computer Science, pages 118–127.

Springer-Verlag, 1989.

